

Light particle searches at Belle

16th July 2009

Chao Liu University of Science and Technology of China (Belle Collaboration)

Contents

- Search for the X(1812)
 - $B^{\pm} \rightarrow K^{\pm} \omega \phi$
- Search for a light pseudo-scalar particle
 - ◊ B → K^{*0}X⁰, X⁰(214) → $µ^+µ^-$
 - ◊ B → $ρ^0 X^0$, $X^0(214)$ → $μ^+μ^-$

Summary

Part I Search for the X(1812) in $B^{\pm} \rightarrow K^{\pm}\omega\varphi$

Near-threshold enhancement

♦ BES found a near-threshold enhancement from the decay channel J/psi → γωφ :

M.Ablikim, PRL 96,162002(2006)

X(1812)
Events(40)

$$(d)$$

 (d)
 (d)

$$B(J/\psi \to \gamma X) \cdot B(X \to \omega \phi)$$

 $= (2.61 \pm 2.07(stat) \pm 0.58(syst)) \times 10^{-4}$ $M = 1812^{+19}_{-26}(stat) \pm 0.58(syst) MeV / c^{2}$ $\Gamma = 105 \pm 20(stat) \pm 25(syst) MeV / c^{2}$

EPS09, Krakow, Poland

Speculation

- Tetraquark state: PRD 74,054017(2006)
- Hybrid K.T.Chao,hep-ph/0602194
- Glueball P.Bicudo, S.R.Cotanch, F.J.Llanes-Estrada and D.G.Robertson, Eur.Phys.J.C 52,363 (2007)
- an effect due to intermediate meson
 rescatterings Q.Zhao and B.S.Zou, PRD 74,114025
 (2006)
- a threshold cusp attracting a resonance D.V.Bugg, J.Phys. G 35,075005 (2008)

Purpose

- Confirm whether X(1812) can be found in other decay channels.
- - via a b → s penguin with ssbar and uubar popping.
 - A similar decay mode B[±] → K[±]φφ , has a rather large branching ratio B.Aubert, PRL,97,261803(2006)

Event Selection

 $\omega \rightarrow \pi^+ \pi^- \pi^0$

 $\phi \rightarrow K^+K^-$

Kinematic variables, ΔE and M_{bc}

$\, \diamond \,$ Kinematic variables, ΔE and M_{bc}

$$\diamond \Delta E = E_B^* - E_{beam}^*$$

- ♦ $(M_{bc})^2 = (M_{ES})^2 = (E_{beam}^*)^2 |p_B^*|^2$ E_{beam}^* : beam energy, p_B^* and E_B^* : momentum and energy of B candidate
- $\diamond~$ -0.2 GeV< ΔE <0.2 GeV , 5.20 GeV/c² < M_{bc} <5.29 GeV/c²

Continuum Suppression

Continuum suppression with event topology variables

- Belle b-flavor tagging algorithm
 - flavor of the tagged meson q (±1).
 - flavor tagging quality factor
 - *r* (0∼1).

Background Study

- Combine events topology variables into a fisher discriminate
- Further suppression is achieved using b-flavor tagging information.

preserve 57.9% signal reject 98.6% continuum background

BBbar Background

 $M_{\pi K^{+}K^{-}} - M_{D_{s}} | > 0.15 GeV/c^{2}$ $M_{\pi^{0}\pi K^{+}K^{-}} M_{D_{s}} | > 0.15 GeV/c^{2}$ $M_{\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}} > 2.2 GeV/c^{2}$

Charmless B decay is negligible

Result

4D extended unbinned ML fit is performed 605fb⁻¹

Result

NO significant signal is observed in $\omega \phi$ mass spectrum

Part II Search for a light pseudo-scalar particle $X^{0}(214) \rightarrow \mu^{+}\mu^{-}$

HyperCP Exotic Events

- Observation of 3 events for $\Sigma^+ \rightarrow p \mu^+ \mu^-$ decays H.K.Park et al. (HyperCP Collaboration), PRL 94, 021801 (2005)
 - Possible interpretations

- Property of X⁰(214)
 - mass: 214.3 ±0.5 MeV/c²
 - Pseudo-scalar or axial-vector

 Sgoldstino (pseudo-scalar)
 D.S.Gorbunov and V.A.Rubakov, PRD 73, 035002 (2006)

Low mass Higgs

X.-G.He, J.Tandean and G.Valencia, PRL 98, 081802 (2007)

Possible Decay Modes for Further Search at B-Factory

- Possible decay modes for further search as sgoldstino in GMSB (Gauge Mediated SUSY Breaking)
 - Pseudo-scalar B and D meson decays to pseudo-scalar meson and X⁰
 - D $\rightarrow \pi \pi X^0$, $X^0 \rightarrow \mu^+ \mu^-$, $\gamma \gamma$
 - B \rightarrow K π X⁰, X⁰ \rightarrow $\mu^+\mu^-$, $\gamma\gamma$
 - $\,\, \mbox{\circ}\,\,$ Pseudo-scalar B and D meson decays to vector meson and X^0

S.V.Demidov and D.S.Gorbunov, JETP Letters, 2006, vol. 84, No. 9, pp479-484

- B(D $\rightarrow \rho X^{0}, X^{0} \rightarrow \mu^{+}\mu^{-}) = 10^{-9} \sim 10^{-6}$
- B(B \rightarrow K* X⁰, X⁰ \rightarrow $\mu^{+}\mu^{-}$) = 10⁻⁹ ~ 10⁻⁶
- B(B $\rightarrow \rho X^0$, $X^0 \rightarrow \mu^+\mu^-$) = 10⁻⁹ ~ 10⁻⁶
- The listed channels above are possible for low mass Higgs search in NMSSM (Next-to-Minimal SUSY SM)

PRELIMINARY

Event selection and Signal efficiency $B \rightarrow K^{*0}X^{0}, K^{*0} \rightarrow K^{+}\pi^{-}, X^{0} \rightarrow \mu^{+}\mu^{-}$ $B \rightarrow \rho^{0}X^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-}, X^{0} \rightarrow \mu^{+}\mu^{-}$

• Invariant masses of K^{*0} and ρ^0 :

central value of the fitted \pm 1.5 Γ and \pm 1 Γ , respectively

 ♦ Kinematic variables, ΔE and M_{bc}, cut applied

Decay mode	Dimuon mass resolution [keV/c ²]	Signal efficiency (ε)
$B \rightarrow K^{*0}X^0$	427 ± 14	$(26.3 \pm 0.1)\%$
$B \rightarrow \rho^0 X^0$	428 ± 15	$(23.5\pm0.1)\%$

Background Study

Counting method

 Use MC samples of continuum and BB-bar which are larger than data sample

Systematic and Upper limit

No event is observed in the signal region for each mode with 657M BB-bar data

The upper limits @ 90% C.L. are calculated **NEW RESULTS**

- B(B⁰ → K^{*0} X⁰, K^{*0} → K⁺ π ⁻ and X⁰ → μ ⁺ μ ⁻) < 2.0 × 10⁻⁸
- B(B⁰ $\rightarrow \rho^{0} X^{0}, \rho^{0} \rightarrow \pi^{-} \pi^{+} \text{ and } X^{0} \rightarrow \mu^{+} \mu^{-}$) < 1.5 × 10⁻⁸
- Our result rules out most of allowed BR for sgoldstino interpretation (will study U.L. as function of lifetime)

EPS09, Krakow, Poland

Expected BR as sgoldstino

Branching ratios of decays $P_{B,D} \longrightarrow VP(P \longrightarrow \mu^+\mu^-)$ in the models I, II, and III. Branching ratios of decays $P_{B,D} \longrightarrow VP(P \longrightarrow \gamma\gamma)$ are given by the same numbers multiplied by $\Gamma(P \longrightarrow \gamma\gamma)/\Gamma(P \longrightarrow \mu^+\mu^-)$

Decay	h_{jl}	$A_0^{(P_{B,D}, V)}$	Br _(model I)	Br _(model II)	$\mathrm{Br}_{\mathrm{(model III)}}$
$B_s \longrightarrow \phi P(P \longrightarrow \mu^+\mu^-)$	$h_{23}^{(D)}$	0.42 [18]	$6.5 imes 10^{-9}$	8.8×10^{-6}	$8.7 imes 10^{-6}$
$B_s \longrightarrow K^{*0} P(P \longrightarrow \mu^+ \mu^-)$	$h_{13}^{(D)}$	0.37 [18]	$5.3 imes 10^{-9}$	7.2×10^{-6}	$2.3 imes 10^{-7}$
$B_c^+ \longrightarrow D^{*+}P(P \longrightarrow \mu^+\mu^-)$	$h_{13}^{(D)}$	0.14 [19]	$3.2 imes 10^{-10}$	$4.4 imes 10^{-7}$	1.4×10^{-8}
$B_c^+ \longrightarrow D_s^{*+} P(P \longrightarrow \mu^+ \mu^-)$	$h_{23}^{(D)}$	0.14ª	$3.0 imes10^{-10}$	$4.0 imes 10^{-7}$	$4.0 imes 10^{-7}$
$B_c^+ \longrightarrow B^{*+}P(P \longrightarrow \mu^+\mu^-)$	$h_{12}^{(U)}$	0.23 [20]	4.1×10^{-10}	$4.4 imes 10^{-8}$	$8.2 imes 10^{-7}$
$B^+ \longrightarrow K^{*+}P(P \longrightarrow \mu^+\mu^-)$	$h_{22}^{(D)}$	0.31 [17]	3.8×10^{-9}	5.2×10^{-6}	5.1×10^{-6}
$B^0 \longrightarrow K^{*0} P(P \longrightarrow \mu^+ \mu^-)$			$3.5 imes 10^{-9}$	4.8×10^{-6}	$4.7 imes 10^{-6}$
$B^0 \longrightarrow \rho P(P \longrightarrow \mu^+ \mu^-)$	$h_{13}^{(D)}$	0.28 [17]	$3.1 imes 10^{-9}$	4.2×10^{-6}	$1.4 imes 10^{-7}$
$B^+ \longrightarrow \rho^+ P(P \longrightarrow \mu^+ \mu^-)$			$3.3 imes 10^{-9}$	$4.6 imes 10^{-6}$	$1.3 imes 10^{-7}$
$D^0 \longrightarrow \rho P(P \longrightarrow \mu^+\mu^-)$	$h_{12}^{(U)}$	0.64 [17]	$1.4 imes 10^{-9}$	$1.5 imes 10^{-7}$	$2.8 imes 10^{-6}$
$D^{+} \longrightarrow \rho^{+} P(P \longrightarrow \mu^{+} \mu^{-})$			$3.5 imes 10^{-9}$	$3.7 imes 10^{-7}$	$7.0 imes 10^{-6}$

^a We did not find any estimate of this form factor in literature and use this value as an order-of-magnitude estimate, which is sufficient for our study.

> S.V.Demidov and D.S.Gorbunov, JETP Letters, 2006, vol. 84, No. 9, pp479-484 Light particle searches at Belle

20

Summary

- Search for the X(1812) in B[±] → K[±]ωφ
 - $\diamond~$ No significant signal is observed in $\omega\phi$ mass spectrum
 - The obtained upper limits @ 90% C.L. are as follows :
 - Br(B^{\pm} \rightarrow K^{\pm} $\omega \phi$) <1.9 \times 10⁻⁶
 - Br(B[±] \rightarrow K[±]X(1812),X(1812) $\rightarrow \omega \varphi$) <3.2×10⁻⁷
- Search for a light pseudo-scalar particle X(214)
 - No event is observed in B decays
 - The obtained upper limits @ 90% C.L. are as follows :
 - B(B⁰ \rightarrow K^{*0} X⁰, K^{*0} \rightarrow K⁺ π ⁻ and X⁰ \rightarrow μ ⁺ μ ⁻) < 2.0 × 10⁻⁸
 - + B(B⁰ $\rightarrow \rho^0 X^0$, $\rho^0 \rightarrow \pi^- \pi^+$ and $X^0 \rightarrow \mu^+ \mu^-$) < 1.5 × 10⁻⁸

THANK YOU