

Charm Decays at Belle

Eunil Won Korea University

on behalf of the Belle collaboration

July 18, EPS HEP 2009, Krakow Poland

Contents

- Search for leptonic decay of D^0 (new:best limits) Study of $D^+_{(s)} \to K_S h^+$ (new:best measurements) First observation of Decay

Search for $D^0 \rightarrow \ell^+ \ell^-$

• FCNC does not appear in SM on tree level (higher order below allowed)

• Certain new physics scenarios allows this process: new particle replacing W boson

Model	${\cal B}_{D^0 o\mu^+\mu^-}$	
Experiment	$\leq 4.3 \times 10^{-7}$ (CDF preliminary)	
Standard Model (SD)	$\sim 10^{-18}$	
Standard Model (LD)	$\sim \text{several} \times 10^{-13}$	
Q = +2/3 Vector-like Singlet	$4.3 imes 10^{-11}$	
Q = -1/3 Vector-like Singlet	$1 imes 10^{-11} \ (m_S/500 \ { m GeV})^2$	
Q = -1/3 Fourth Family	$1 imes 10^{-11} \ (m_S/500 \ { m GeV})^2$	
Z' Standard Model (LD)	$2.4 \times 10^{-12} / (M_{Z'}(\text{TeV}))^2$	
Family Symmetry	$0.7 imes10^{-18}$	
RPV-SUSY	$4.8 \times 10^{-9} \ (300 \ {\rm GeV}/m_{\tilde{d}_{\nu}})^2$	

. Golowich, J. Hewett, S. Pakvasa, A. A. Petrov RD79 114030 (2009)

> Except Family Symmetry all NP exceed the SM prediction

Belle is most sensitive to RPV-SUSY scenario

Search for $D^0 \rightarrow \ell^+ \ell^-$

Data Sample

- 659 fb-1 of Υ (4S) resonance and near data analyzed
- Normalization channel $D^0 \to \pi^+\pi^-$ (both MC and data)

Event Selection

- Particle identification, soft pion tagging for D meson
- vertex fit for D(*) meson, $~q\equiv m_{D^{*+}}-m_{D^0}-m_{\pi_s}< 0.02~{
 m GeV}/c^2$
- D meson momentum cut: $p_{D^{*+}} > 2.5 \text{ GeV}/c$

Optimization

• maximizing
$$\epsilon_{\ell\ell}/N_{UL}$$

 $\epsilon_{\ell\ell}$: efficiency N_{UL} : Poisson average of FC 90% CL upper limit lepton ID, $\Delta m, \Delta q, E_{\mathrm{miss}}, p^*_{D^*+}$ are used for the optimization

Search for $D^0 \rightarrow \ell^+ \ell^-$

- Estimation of background
 - $q \equiv m_{D^{*+}} m_{D^0} m_{\pi_s}$

Combinatorial background

2 D estimation with <i>a</i>	$u(1-bm)/\sqrt{q}$			
The ratio of combinatorial background in the signal to the number in the side band				
channel	p[%]			
$\mu^+\mu^-$	1.08			
e^+e^-	1.49			
$e^{\pm}\mu^{\mp}$	1.43			
Reflection back	kground from			
$D^0 \rightarrow \pi^+ \pi^-$	_			

- peak shifted in ${\mathcal M}$ but on peak in Q - $\pi^+ o \ell^+$ mis-id measured with $D^0 o K^- \pi^+$

(Number of reflection in the signal window)

channel	N_{refl}^{DATA}	
$\mu^+\mu^-$	1.81 ± 0.002	
e^+e^-	0.0372 ± 0.0002	
$e^{\pm}\mu^{\mp}$	0.1935 ± 0.0006	5 /11

Study of $D^+_{(s)} \to K_S h^+$

- We look for ratios of SCS to CF $D^+_{(s)}$ decays
- Present measurements are dominated by CLEO

Mode	PDG2008	CLEO 2009 (*)
$\mathcal{B}(D^+ \to K_S K^+) / \mathcal{B}(D^+ \to K_S \pi^+)$	0.189±0.016±0.007	0.199±0.007
$\mathcal{B}(D_s^+ \to K_S \pi^+) / \mathcal{B}(D_s^+ \to K_S K^+)$	0.082±0.009±0.002	0.085±0.007

(*) My personal calculation from CLEO arXiv: 0906.3198v1 (including systematics)

- The goal of this study is to improve this ratio measurements
- It may give us better understanding on flavor SU(3) symmetry with other measurements

Decay modes	rields	$\mathcal{B}(D^+ \to K_{\rm S}K^+) / \mathcal{B}(D^+ \to K_{\rm S}\pi^+) = 0$ 90+0 00 +0 002
$D^+ \to K_S K^+$	100855 ± 561	
$D_s^+ \to K_S K^+$	204093 ± 768	$\mathcal{B}(D_s^+ \to K_S \pi^+) / \mathcal{B}(D_s^+ \to K_S K^+) = 0.077 \pm 0.002 \pm 0.002$
$D^+ \to K_S \pi^+$	566105 ± 1159	
$D_s^+ \to K_S \pi^+$	16817 ± 448	

Observation of $D_s^+ \to K^+ K^+ \pi^-$

- Not observed yet
- One can look at the double ratio to test SU(3) flavor symmetry : Lipkin, NPB 115 117 (2003)

$$\frac{\mathcal{B}(D_s^+ \to K^+ K^+ \pi^-)}{\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)} \frac{\mathcal{B}(D^+ \to K^+ \pi^+ \pi^-)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)} = \tan^8 \theta_C$$

- Differences in the phase space cancel in the ratios
- SU(3) breaking effects due to resonant intermediate states in the 3-body violates the equation above

$$\frac{\mathcal{B}(D_s^+ \to K^+ K^+ \pi^-)}{\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)} \frac{\mathcal{B}(D^+ \to K^+ \pi^+ \pi^-)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)} = (1.57 \pm 0.21) \cdot \tan^8 \theta_C$$

Summary of Charm decays

- Search for leptonic decays of D^0
 - Best limits are achieved (preliminary)
- Study of $D^+_{(s)} \to K_S h^+$

$$\begin{split} \mathcal{B}(D^0 \to \mu^+ \mu^-) &< 1.4 \times 10^{-7} \\ \mathcal{B}(D^0 \to e^+ e^-) &< 7.9 \times 10^{-8} \\ \mathcal{B}(D^0 \to \mu^\pm e^\mp) &< 2.6 \times 10^{-7} \end{split}$$

90% CL upper limit

- Most precise BRs are obtained (preliminary)

Preliminary ratios of CS/CF

 $\mathcal{B}(D^+ \to K_S K^+) / \mathcal{B}(D^+ \to K_S \pi^+) = 0.190 \pm 0.001 \pm 0.002$ $\mathcal{B}(D_s^+ \to K_S \pi^+) / \mathcal{B}(D_s^+ \to K_S K^+) = 0.077 \pm 0.002 \pm 0.002$

• Observation of DCSD in $D_s^+ \to K^+ K^+ \pi^-$

- Observed for the first time (final: PRL 102 221802 (2009))

Branching fraction	Belle	World average [3]
$ \begin{array}{c} \mathcal{B}(D^+ \to K^+ \pi^+ \pi^-) \\ \mathcal{B}(D^+_s \to K^+ K^+ \pi^-) \end{array} $	$(5.2 \pm 0.2 \pm 0.1) imes 10^{-4} \ (1.3 \pm 0.2 \pm 0.1) imes 10^{-4}$	$(6.2 \pm 0.7) \times 10^{-4}$ $(2.9 \pm 1.1) \times 10^{-4}$