Introduction	$B ightarrow D^* \ell^+ u_\ell$	$B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$	Inclusive tag	Hadronic tag	Summary
0000	00000000		0000	0000	00

Semileptonic $b \rightarrow c$ Decays at Belle

Wolfgang Dungel

Institute for high energy physics Austrian Academy of Sciences

on behalf of the Belle collaboration

EPS HEP 2009, July 17, 2009

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

ntroduction	
000	

 $\begin{array}{ccc} B \to D^* \ell^+ \nu_{\ell} & B \to D^{(*)} \tau^+ \nu_{\ell} \\ \text{occocccccc} \end{array}$

Inclusive tag

Summary

Greetings from Belle!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction 0000	$B \to D^* \ell^+ \nu_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00

Belle and the KEK-B accelerator

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction ○●○○	$B \to D^* \ell^+ \nu_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00

Belle and the KEK-B accelerator

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Belle and the KEK-B accelerator

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Osusila					

Semileptonic $b \rightarrow c$ transitions at *B* factories

Introduction	$\begin{array}{c} B \rightarrow D^* \ell^+ \nu_\ell \\ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Somilo	otonio h	o tropoition	ot P foo	torioo	

• Determine $\{|V_{ub}|, |V_{cb}|\}$ • What to do with $B\bar{B}$ data?

• Except ... 🙂

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

- New physics can introduce additional terms
- Precise measurements of |V_{ub}| and |V_{cb}| crucial to observe deviations from CKM mechanism

- New physics can introduce additional terms
- Precise measurements of |V_{ub}| and |V_{cb}| crucial to observe deviations from CKM mechanism

Semileptonic $b \rightarrow c$ transitions at *B* factories

- New physics can introduce additional terms
- Precise measurements of $|V_{ub}|$ and $|V_{cb}|$ crucial to observe deviations from CKM mechanism

- New physics can introduce additional terms
- Precise measurements of $|V_{ub}|$ and $|V_{cb}|$ crucial to observe deviations from CKM mechanism

Introduction	$B ightarrow D^* \ell^+ u_\ell$ 000000000	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$B ightarrow D^* \ell^+ u_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary
0000	•00000000		0000	0000	00

Measurement of the decays $B^0 \to D^{*-}\ell^+\nu$ and $B^+ \to \overline{D}^{*0}\ell^+\nu$ at Belle

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \bullet \circ \circ$	$B ightarrow {\cal D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Differer	ntial decay	width			

Kinematic variables

•
$$w = \frac{p_B^{\mu} \cdot p_{D^*, \mu}}{m_{B^0} m_{D^*}} = a + b q^2$$

• $\cos \theta_{\ell} \cos \theta_{V} \propto$

Differential decay width

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \bullet \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
-					

Differential decay width

Kinematic variables

•
$$w = \frac{p_B^{\mu} \cdot p_{D^*,\mu}}{m_{P^0} m_{D^*}} = a + b q^2$$

• $\cos \theta_{\ell}, \cos \theta_{V}, \chi$

Differential decay width

Aside from masses etc. identical for B⁰ and B⁺

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$B \to D^* \ell^+ \nu_\ell$	$B ightarrow D^{(*)} au^+ u_{\ell}$	Inclusive tag	Hadronic tag	Summary
0000	0000000		0000	0000	00

dw

Differential decay width

Kinematic variables

•
$$W = \frac{p_B^{\mu} \cdot p_{D^*,\mu}}{m_{\mu} m_{D^*}} = a + b q^2$$

• $\cos \theta_{\ell}, \cos \theta_{V}, \chi$

Differential decay width

Aside from masses etc. identical for B⁰ and B⁺

P N u

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \bullet \bullet \circ \circ \circ \circ \circ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Conside • Only • $\overline{B} \rightarrow$ •	red final st signal is re $D^*\ell^-ar u_\ell,$ $D^* o D^0\pi_s$	ates constructed	$B^0 \rightarrow D^{*-}$ • Showr	$\ell^+ \nu$ n at ICHEP08	3
	• $D^0 \rightarrow K$ • $D^0 \rightarrow K$		• N_{signal} $B^+ o ar D^{*0}$	$= 69,345 \pm \ell^+ \nu$	377
• $\mathcal{F}_1 V$ • Form	/ _{cb} n factor para	ameters	 New p N_{signal} 	reliminary re = 27,106 ±	sult 367
● B ⁰ a syste	nd <i>B</i> + show ematic unce	v different π_s ertainty			actions

・ロト・日本・ヨト・ヨト・ヨト 三日 つへで
EPS09 - Semileptonic b → c Decays at Belle

BELLE

ntroduction	$B \to D^* \ell^+ \nu_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
	dered final st				
• 0	nly signal is re	constructed			
• B	$ ightarrow D^* \ell^- \bar{ u}_\ell,$ $ ho D^* ightarrow D^0 \pi_2$		 Shown 	n at ICHEP08	
			• N _{signal}	$=$ 69, 345 \pm	377
Resul	ts		New p	reliminary re	sult
• F	1 V _{cb} orm factor para	ameters	• N _{signal}	= 27,106 ±	367
Syste	matics				
• B ⁽ sy	⁰ and <i>B</i> ⁺ show vstematic unce	v different π_s rtainty			actions

ntroduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \circ \bullet \circ \circ \circ \circ \circ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Consid	dered final st	ates			
● Or ● Ē	hly signal is re $ ightarrow D^* \ell^- \overline{\nu}_\ell,$ $ ho D^* ightarrow D^0 \pi_s$ $ ho D^0 ightarrow K$ $ ho D^0 ightarrow K$	constructed $^{-\pi^+}_{-\pi^+\pi^-\pi^+}$	$B^0 \rightarrow D^{*-}$ • Shown • N_{signal}	$\ell^+ \nu$ at ICHEP08 = 69,345 ±	3 377
			$B^+ ightarrow ar{D}^{*0}$		
Result	S		New p	reliminary re	sult
 \$\mathcal{F}_1\$ Fo 	<i>V_{cb}</i> rm factor para	ameters	• N _{signal}	= 27, 106 ±	367
D 0	and Rt show	u difforont -			

▲ □ ▷ < 团 ▷ < 토 ▷ < 토 ▷ 로 □ =
 ◆ Q ↔
 EPS09 - Semileptonic b → c Decays at Belle

ntroduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \bullet \bullet \circ \circ \circ \circ \circ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Consi	dered final st	ates			
• Oi • B	nly signal is re $\rightarrow D^* \ell^- \bar{\nu}_\ell,$ • $D^* \rightarrow D^0 \pi_s$ • $D^0 \rightarrow K$ • $D^0 \rightarrow K$	constructed $\pi^{-}\pi^{+}$ $\pi^{+}\pi^{-}\pi^{+}$	$B^0 \rightarrow D^{*-}$ • Shown • N_{signal}	ℓ ⁺ ν n at ICHEP08 = 69,345 ±	3 377
Result	ts		New p	reliminary re	sult
 <i>F</i>1 Fc 	_I V _{cb} orm factor para	ameters	• N _{signal}	= 27,106 ±	367
Syster	matics				
• B ⁰	and B ⁺ show	v different π_s			

systematic uncertainty

ntroduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \circ \bullet \circ \circ \circ \circ \circ \circ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summar 00
Consid Or B	dered final st hly signal is re $\rightarrow D^* \ell^- \bar{\nu}_\ell,$	ates constructed	$B^0 \rightarrow D^{*-}$ • Shown	^{ℓ+} ν at ICHEP08	3
	• $D^* \rightarrow D^0 \pi_s$ • $D^0 \rightarrow K$ • $D^0 \rightarrow K$	$^{-}\pi^{+}$ $^{-}\pi^{+}\pi^{-}\pi^{+}$	• N _{signal}	$= 69,345 \pm$	377
_			$B^+ ightarrow ar{D}^{*0}$	$\ell^+ u$	
Result	S		New p	reliminary re	sult
• <i>F</i> ₁	$ V_{cb} $		N _{signal}	$=$ 27, 106 \pm	367

- $\mathcal{F}_1 | V_{cb} |$
- Form factor parameters

Systematics

• B^0 and B^+ show different π_s systematic uncertainty

- B⁰ signal purity and background fractions
- B^+ signal purity and background fractions

< 🗇 🕨

Introduction	$B \to D^* \ell^+ \nu_\ell$	$B ightarrow {\it D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary
0000	00000000		0000	0000	00

Investigated using MC

- Fake D⁰
- Combinatoric D*
- Fake Lepton
- Uncorrelated
- $B \rightarrow D^{**}\ell\nu, B \rightarrow D^*X\ell\nu$
- Signal correlated

Off-resonance data • Continuum: *q̄q* decays

HMCMLL, TFractionFitter

- Determine norm of MC components from fit to data
- Use 2D distribution $\cos \theta_{B^0, D^* \ell}$ vs. Δm

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$B \to D^* \ell^+ \nu_\ell$	$B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$	Inclusive tag	Hadronic tag	Summary
0000	0000000		0000	0000	00

Investigated using MC

- Fake D⁰
- Combinatoric D*
- Fake Lepton
- Uncorrelated
- $B \rightarrow D^{**}\ell\nu, B \rightarrow D^*X\ell\nu$
- Signal correlated

Off-resonance data

• Continuum: qq decays

HMCMLL, TFractionFitter

- Determine norm of MC components from fit to data
- Use 2D distribution $\cos \theta_{B^0, D^* \ell}$ vs. Δm

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$B \to D^* \ell^+ \nu_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary
0000	00000000		0000	0000	00

Investigated using MC

- Fake D⁰
- Combinatoric D*
- Fake Lepton
- Uncorrelated
- $B \rightarrow D^{**}\ell\nu, B \rightarrow D^*X\ell\nu$
- Signal correlated

Off-resonance data

• Continuum: qq decays

HMCMLL, TFractionFitter

- Determine norm of MC components from fit to data
- Use 2D distribution $\cos \theta_{B^0, D^* \ell}$ vs. Δm

Introduction	$B \to D^* \ell^+ u_\ell$	$B ightarrow {\it D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary
0000	00000000		0000	0000	00

Investigated using MC

- Fake D⁰
- Combinatoric D*
- Fake Lepton
- Uncorrelated
- $B \rightarrow D^{**}\ell\nu, B \rightarrow D^*X\ell\nu$
- Signal correlated

Off-resonance data

• Continuum: qq decays

HMCMLL, TFractionFitter

- Determine norm of MC components from fit to data
- Use 2D distribution $\cos \theta_{B^0, D^* \ell}$ vs. Δm

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \circ \circ \circ \bullet \circ \circ \circ \circ \end{array}$	$B ightarrow {\cal D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Plots of	B ⁺ backo	round - <i>e</i> ch	nannels		

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$B \to D^* \ell^+ \nu_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary
0000	00000000		0000	0000	00

Reconstruction of the *B* rest frame

D*l reconstruction yields 1D space of B candidates
Combined with inclusive sum of remaining event: "best B"

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$B \rightarrow D^* \ell^+ \nu_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary
0000	000000000		0000	0000	00

Reconstruction of the *B* rest frame

- D* l reconstruction yields 1D space of B candidates
- Combined with inclusive sum of remaining event: "best B"

Introduction	$B \to D^* \ell^+ \nu_\ell$	$B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$	Inclusive tag	Hadronic tag	Summary
0000	000000000		0000	0000	00

Plots of preliminary results - B^0

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$B \to D^* \ell^+ \nu_\ell$	$B \rightarrow D^{(*)} \tau^+ \nu_\ell$	Inclusive tag	Hadronic tag	Summary
0000	000000000		0000	0000	00

Plots of preliminary results - B^+

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \circ \circ \circ \circ \circ \circ \bullet \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Prelimina	ary results				

	$B^0 ightarrow D^{*-} \ell u$	$B^+ ightarrow ar{D}^{*0} \ell u$
ρ^2	$1.293 \pm 0.045 \pm 0.029$	$1.376 \pm 0.074 \pm 0.056$
<i>R</i> ₁ (1)	$1.495 \pm 0.050 \pm 0.062$	$1.620 \pm 0.091 \pm 0.092$
<i>R</i> ₂ (1)	$0.844 \pm 0.034 \pm 0.019$	$0.805 \pm 0.064 \pm 0.036$
$R_{K3\pi/K\pi}$	$\textbf{2.153} \pm \textbf{0.011}$	2.072 ± 0.023
${\cal B}(B o D^* \ell^+ u_\ell)$	$(4.42\pm 0.03\pm 0.25)\%$	$(4.84\pm 0.04\pm 0.56)\%$
$\mathcal{F}(1) \left V_{cb} ight imes 10^3$	$34.4\pm0.2\pm1.0$	$35.0\pm0.4\pm2.2$
$\chi^2/n.d.f.$	138.8/155	187.8/155
P_{χ^2}	82.0%	3.7%

Explicit test of the parametrization - $B^+ \rightarrow \bar{D}^{*0} \ell \nu$

- Result of discussions with theoreticians in Karlsruhe
- Extract shapes of longitudinal and transversal helicity amplitudes from a 2D fit
- Good agreement with parametrized result

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Explicit test of the parametrization - $B^+ \rightarrow \bar{D}^{*0} \ell \nu$

- Result of discussions with theoreticians in Karlsruhe
- Extract shapes of longitudinal and transversal helicity amplitudes from a 2D fit
- Good agreement with parametrized result

Explicit test of the parametrization - $B^+ \rightarrow \bar{D}^{*0} \ell \nu$

- Result of discussions with theoreticians in Karlsruhe
- Extract shapes of longitudinal and transversal helicity amplitudes from a 2D fit
- Good agreement with parametrized result

Introduction	$B ightarrow D^* \ell^+ u_\ell$	$B ightarrow {\cal D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary
0000	00000000		•000	0000	00

Observation of $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ Decay at Belle

PRL 99, 191807 (2007)

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Observation of $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$

Signal reconstruction

• Three signal cascades are considered

•
$$B^0 \rightarrow D^{*-} \tau^+ \nu$$

• $\tau^+ \rightarrow e^+ \nu \nu$
• $D^{*-} \rightarrow D^0 \pi^-$
• $D^0 \rightarrow K \pi$

•
$$B^0 \rightarrow D^{*-} \tau^+ \nu$$

• $\tau^+ \rightarrow e^+ \nu \nu$
• $D^{*-} \rightarrow D^0 \pi^-$
• $D^0 \rightarrow K \pi \pi^0$

$$B^{0} \rightarrow D^{*-}\tau^{+}\nu$$

$$\bullet D^{*-} \rightarrow D^{0}\pi^{-}$$

$$\bullet D^{0} \rightarrow K\pi$$
Introduction	$B ightarrow D^* \ell^+ u_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary
0000	00000000		0000	0000	00

Observation of $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$

Signal reconstruction

• Three signal cascades are considered

•
$$B^0 \rightarrow D^{*-} \tau^+ \nu$$

• $\tau^+ \rightarrow e^+ \nu \nu$
• $D^{*-} \rightarrow D^0 \pi^-$
• $D^0 \rightarrow K \pi$

•
$$B^0 \rightarrow D^{*-} \tau^+ \nu$$

• $\tau^+ \rightarrow e^+ \nu \nu$
• $D^{*-} \rightarrow D^0 \pi^-$
• $D^0 \rightarrow K \pi \pi^0$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

 $\begin{array}{ccc} \text{Introduction} & B \to D^* \ell^+ \nu_\ell & B \to D^{(*)} \tau^+ \nu_\ell & \begin{array}{ccc} \text{Inclusive tag} & \text{Hadronic tag} & \text{Summary} \\ \bullet \bullet \bullet \bullet & \bullet & \bullet \end{array} \end{array}$

Observation of $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$

Signal reconstruction

Three signal cascades are considered

•
$$B^0 \rightarrow D^{*-} \tau^+ \nu$$

• $\tau^+ \rightarrow e^+ \nu \nu$
• $D^{*-} \rightarrow D^0 \pi^-$
• $D^0 \rightarrow K \pi$

•
$$B^0 \rightarrow D^{*-} \tau^+ \nu$$

• $\tau^+ \rightarrow e^+ \nu \nu$
• $D^{*-} \rightarrow D^0 \pi^-$
• $D^0 \rightarrow K \pi \pi^0$

$$B^{D} \rightarrow D^{*-}\tau^{+}\nu$$

$$T^{+} \rightarrow \pi^{+}\nu$$

$$D^{*-} \rightarrow D^{0}\pi^{-}$$

$$D^{0} \rightarrow K\pi$$

 $\begin{array}{ccc} \text{Introduction} & B \to D^* \ell^+ \nu_\ell & B \to D^{(*)} \tau^+ \nu_\ell & \begin{array}{ccc} \text{Inclusive tag} & \text{Hadronic tag} & \text{Summary} \\ \bullet \bullet \bullet \bullet & \bullet & \bullet \end{array} \end{array}$

Observation of $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$

Signal reconstruction

• Three signal cascades are considered

•
$$B^0 \rightarrow D^{*-} \tau^+ \nu$$

• $\tau^+ \rightarrow e^+ \nu \nu$
• $D^{*-} \rightarrow D^0 \pi^-$
• $D^0 \rightarrow K \pi$

•
$$B^0 \rightarrow D^{*-} \tau^+ \nu$$

• $\tau^+ \rightarrow e^+ \nu \nu$
• $D^{*-} \rightarrow D^0 \pi^-$
• $D^0 \rightarrow K \pi \pi^0$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$\begin{array}{c} B \rightarrow D^* \ell^+ \nu_\ell \\ \circ $	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Full reco	onstruction	า			

Inclusive *B*_{tag} reconstruction

- All tracks remaining after signal reconstruction $\Rightarrow B_{tag}$
- No selection of specific *B*_{tag} channel
- Quality cuts similar to normal full reconstruction

•
$$\Delta E = E_{tag} - E_{beam}$$

•
$$m_{bc}=\sqrt{E_{beam}^2-ec{p}_{tag}^2}$$

• Total event charge, small residual energy, ...

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Full rec	onstruction	า			

Inclusive B_{tag} reconstruction

- All tracks remaining after signal reconstruction $\Rightarrow B_{tag}$
- No selection of specific *B_{tag}* channel
- Quality cuts similar to normal full reconstruction

•
$$\Delta E = E_{tag} - E_{beam}$$

•
$$m_{bc}=\sqrt{E_{beam}^2-ec{p}_{tag}^2}$$

• Total event charge, small residual energy, ...

Signal reconstruction???

• What about full reconstruction?

Introduction	$B ightarrow D^* \ell^+ u_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00			
Full rec	constructio	n						
Inclu	sive B _{tag} reco	onstruction						
• /	All tracks rema	aining after sigr	nal reconstruc	ction $\Rightarrow B_{tag}$				
•	• No selection of specific <i>B_{tag}</i> channel							
• (Quality cuts si	milar to normal	full reconstru	uction				
	• $\Delta E = E_{tag}$	- E _{beam}						

•
$$m_{bc} = \sqrt{E_{beam}^2 - ec{p}_{tag}^2}$$

• Total event charge, small residual energy, ...

• What about full reconstruction?

"Inverted procedure"

Reconstruct second B after signal

Introduction	$B ightarrow D^*\ell^+ u_\ell$ 000000000	$B ightarrow {\it D}^{(*)} au^+ u_\ell$	Inclusive tag ○○●○	Hadronic tag	Summary 00
Full rec	constructio	n			
Inclu	sive <i>B_{tag}</i> rec	onstruction			
• /	All tracks rema	aining after sign	al reconstruc	ction $\Rightarrow B_{tag}$	
	No selection o	f specific B _{tag} c	hannel		

• Quality cuts similar to normal full reconstruction

•
$$\Delta E = E_{tag} - E_{beam}$$

•
$$m_{bc}=\sqrt{E_{beam}^2-ec{p}_{tag}^2}$$

• Total event charge, small residual energy, ...

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Inclusive B_{tag} reconstruction

- All tracks remaining after signal reconstruction $\Rightarrow B_{tag}$
- No selection of specific *B*_{tag} channel
- Quality cuts similar to normal full reconstruction

•
$$\Delta E = E_{tag} - E_{beam}$$

•
$$m_{bc} = \sqrt{E_{beam}^2 - ec{p}_{tag}^2}$$

• Total event charge, small residual energy, ...

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \end{array}$	$B ightarrow {\cal D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00

Full reconstruction

Inclusive B_{tag} reconstruction

- All tracks remaining after signal reconstruction $\Rightarrow B_{tag}$
- No selection of specific *B*_{tag} channel
- Quality cuts similar to normal full reconstruction

•
$$\Delta E = E_{tag} - E_{beam}$$

•
$$m_{bc}=\sqrt{E_{beam}^2-ec{p}_{tag}^2}$$

• Total event charge, small residual energy, ...

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ $	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag ○○○●	Hadronic tag	Summary 00
Results					

- Excess of events seen
- Extraction via unbinned maximum likelyhood fit to M_{tag}

Simultaneous fit to all channels, signal yield: N = 60⁺¹²₋₁₁
 B(B⁰ → D^{*−}τ⁺ν) = 2.02^{+0.40}_{-0.37}(stat) ± 0.37(syst)%

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ $	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag ○○○●	Hadronic tag	Summary 00
Results					

- Excess of events seen
- Extraction via unbinned maximum likelyhood fit to *M_{tag}*

Simultaneous fit to all channels, signal yield: N = 60⁺¹²₋₁₁
 B(B⁰ → D^{*−}τ⁺ν) = 2.02^{+0.40}_{-0.37}(stat) ± 0.37(syst)%

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ $	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag ○○○●	Hadronic tag	Summary 00
Results					

- Excess of events seen
- Extraction via unbinned maximum likelyhood fit to M_{tag}

Simultaneous fit to all channels, signal yield: N = 60⁺¹²₋₁₁
 B(B⁰ → D^{*−}τ⁺ν) = 2.02^{+0.40}_{-0.37}(stat) ± 0.37(syst)%

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ $	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag ○○○●	Hadronic tag	Summary 00
Results					

- Excess of events seen
- Extraction via unbinned maximum likelyhood fit to M_{tag}

Simultaneous fit to all channels, signal yield: N = 60⁺¹²₋₁₁
 B(B⁰ → D^{*−}τ⁺ν) = 2.02^{+0.40}_{-0.37}(stat) ± 0.37(syst)%

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag ○○○●	Hadronic tag	Summary 00
Results					

- Excess of events seen
- Extraction via unbinned maximum likelyhood fit to M_{tag}
- Simultaneous fit to all channels, signal yield: N = 60⁺¹²₋₁₁
 B(B⁰ → D^{*−}τ⁺ν) = 2.02^{+0.40}_{-0.37}(stat) ± 0.37(syst)%

Introduction	$B ightarrow D^*\ell^+ u_\ell$ 000000000	$B ightarrow {\cal D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag ●০০০	Summary 00

$B \rightarrow D^{(*)} \tau^+ \nu_\ell$ at Belle - hadronic tag

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

roductio	n <i>E</i>
000	C

 $B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$

Inclusive tag

Hadronic tag 0000

Summary

Investigation of $B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$

- B_{tag} from hadronic modes
 - $B^+ \rightarrow D^0 \tau^+ \nu$ • $B^+ \rightarrow D^{*0} \tau^+ \nu$ • $B^0 \rightarrow D^- \tau^+ \nu$
 - $B^0 \rightarrow D^{*-} \tau^+ \nu$

• $\tau \rightarrow \ell \nu \nu$

- $B \rightarrow D^{(*)} \ell \nu$
- Suppression via \vec{p}_{ℓ} cut
- Contribution still sizeable

 $B \rightarrow D^* \ell^+ \nu_{\ell}$

 $B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$

Inclusive tag

Hadronic tag 0000

Summary

Investigation of $B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$

Analysis strategy

• B_{tag} from hadronic modes signal:

•
$$B^+ \rightarrow D^0 \tau^+ \nu$$

• $B^+ \rightarrow D^{*0} \tau^+ \nu$
• $B^0 \rightarrow D^- \tau^+ \nu$
• $B^0 \rightarrow D^{*-} \tau^+ \nu$

• $\tau \rightarrow \ell \nu \nu$

•
$$B \rightarrow D^{(*)} \ell \nu$$

- Suppression via \vec{p}_{ℓ} cut
- Contribution still sizeable

 $B \rightarrow D^* \ell^+ \nu_{\ell}$

 $B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$

Inclusive tag

Hadronic tag 0000

Summary

Investigation of $B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$

Analysis strategy

- B_{tag} from hadronic modes
- signal:

•
$$B^+ \rightarrow D^0 \tau^+ \nu$$

• $B^+ \rightarrow D^{*0} \tau^+ \nu$
• $B^0 \rightarrow D^- \tau^+ \nu$

•
$$B^0 \rightarrow D^{*-} \tau^+ \nu$$

• $\tau \rightarrow \ell \nu \nu$

Main Background

•
$$B \rightarrow D^{(*)} \ell \nu$$

- Suppression via \vec{p}_{ℓ} cut
- Contribution still sizeable

 $B \rightarrow D^* \ell^+ \nu_{\ell}$

 $B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$

Inclusive tag

Hadronic tag 0000

Summary

Investigation of $B \rightarrow D^{(*)} \tau^+ \nu_{\ell}$

Analysis strategy

- B_{tag} from hadronic modes
- signal:

•
$$B^+ \rightarrow D^0 \tau^+ \nu$$

• $B^+ \rightarrow D^{*0} \tau^+ \nu$
• $B^0 \rightarrow D^- \tau^+ \nu$

•
$$B^0 \rightarrow D^{*-} \tau^+ \nu$$

• $\tau \rightarrow \ell \nu \nu$

Main Background

•
$$B \rightarrow D^{(*)} \ell \nu$$

- Suppression via \vec{p}_{ℓ} cut
- Contribution still sizeable

Introduction	$B ightarrow D^* \ell^+ u_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary 00
Signal e	extraction				

- These distributions are sensitive to signal
- Ideal signal event: No unmatched energy in ECL!
- $B \rightarrow D^{(*)} \ell \nu$ events give peak at $M_{mis}^2 = 0$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag ○○●○	Summary 00
Signal ex	xtraction				

2D fit to M_{mis}^2 vs. E_{ECL} distribution

- These distributions are sensitive to signal
- Ideal signal event: No unmatched energy in ECL!
- $B \rightarrow D^{(*)} \ell \nu$ events give peak at $M_{mis}^2 = 0$

Introduction	$B ightarrow D^* \ell^+ u_\ell$ 000000000	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	H o	adronic tag oo●	Summary 00
Fit resu	lts					
					Stat. s	
 B(B⁺) B(B⁺) B(B⁰) B(B⁰) 	$\rightarrow \overline{D}^{0}\tau^{+}\nu) = 1.5$ $\rightarrow \overline{D}^{*0}\tau^{+}\nu) = 3.0$ $\rightarrow D^{-}\tau^{+}\nu) = 1.0$ $\rightarrow D^{*-}\tau^{+}\nu) = 2.0$	$\begin{array}{l} 1 + 0.41 \\ - 0.39 \\ (stat) + 0.19 \\ 04 - 0.66 \\ (stat) + 0.40 \\ - 0.66 \\ (stat) + 0.41 \\ - 0.41 \\ (stat) + 0.11 \\ - 0.11 \\ (stat) + 0.31 \\ - 0.22 \\ \end{array}$	$(syst) \pm 0.15(norm)\%$ $(syst) \pm 0.22(norm)$ $(syst) \pm 0.10(norm)\%$ $(syst) \pm 0.10(norm)$		 3.8a 3.9a 2.6a 4.7a 	
Data s	sample)4.5fb ⁻¹		First evidence So charged	, <i>В</i> -	$^+ ightarrow D^0 au^-$ igas?	+ _ν !

Deviation from Standard model predictions

• $B^+ \rightarrow \bar{D}^0 \tau^+ \nu$: 1.6 $\sigma, B^0 \rightarrow D^- \tau^+ \nu$: 0.5 σ

Measurements agree with the SM within the errors

Introduction	$B ightarrow D^* \ell^+ u_\ell$ 000000000	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag 000●	Summary 00
Fit resu	ults				
Obtaine	d branching	ratios		Stat. s	ign.
● B(B ⁺	$\bar{D} \to \bar{D}^0 au^+ u) = 1.5^{-1}$	$1^{+0.41}_{-0.39}(stat)^{+0.24}_{-0.19}(sy$	$st) \pm 0.15(norm)^{\circ}$	% • 3.80	τ

• $\mathcal{B}(B^+ \to \bar{D}^{*0}\tau^+\nu) = 3.04^{+0.69}_{-0.66}(stat)^{+0.40}_{-0.47}(syst) \pm 0.22(norm)\%$

• $\mathcal{B}(B^0 \to D^- \tau^+ \nu) = 1.01^{+0.46}_{-0.41}(stat)^{+0.13}_{-0.11}(syst) \pm 0.10(norm)\%$

• $\mathcal{B}(B^0 \to D^{*-}\tau^+\nu) = 2.56^{+0.75}_{-0.66}(stat)^{+0.31}_{-0.22}(syst) \pm 0.10(norm)\%$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

nan

3.9σ

2.6σ • 4.7σ

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \end{array}$	$B ightarrow {\cal D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadro	onic tag	Summary 00	
Fit resu	lts						
Obtained	d branching	ratios			Stat. si		
● <i>B</i> (<i>B</i> ⁺	$ ightarrow ar{D}^0 au^+ u) =$ 1.51	$^{+0.41}_{-0.39}(stat)^{+0.24}_{-0.19}(sy)$	$st) \pm 0.15(norm)^{o}$	%	3.8c		
● B(B ⁺	$ ightarrow ar{D}^{*0} au^+ u) =$ 3.0	$4^{+0.69}_{-0.66}(stat)^{+0.40}_{-0.47}(s_{-0.47})^{+0.40}$	yst) \pm 0.22(norm))%	3.9d		
$\mathbf{P}(\mathbf{P})$	$(D^{-} - +) = 1.0$	+0.46 (atat) $+0.13$ (a)	$(at) \perp 0.10(norm)$	0/	2.60		

• $\mathcal{B}(B^0 \to D^- \tau^+ \nu) = 1.01^{+0.46}_{-0.41}(stat)^{+0.13}_{-0.11}(syst) \pm 0.10(norm)\%$

•
$$\mathcal{B}(B^0 \to D^{*-}\tau^+\nu) = 2.56^{+0.75}_{-0.66}(stat)^{+0.31}_{-0.22}(syst) \pm 0.10(norm)\%$$

● 604.5fb⁻¹

• First evidence,
$$B^+ \rightarrow D^0 \tau^+ \nu!$$

So charged Higgs?

Deviation from Standard model predictions

• $B^+ \rightarrow \bar{D}^0 \tau^+ \nu$: 1.6 $\sigma, B^0 \rightarrow D^- \tau^+ \nu$: 0.5 σ

• Measurements agree with the SM within the errors

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

• 4.7σ

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \text{ooooooooo} \end{array}$	$B o D^{(*)} au^+ u_\ell$	Inclusive tag	Hadro 000●	nic tag	Summary 00
Fit resul	ts					
Obtained	l branching r	atios			Stat. si	
 B(B⁺) B(B⁺) 	$egin{array}{lll} ightarrow ar{D}^0 au^+ u) = 1.51 \ ightarrow ar{D}^{*0} au^+ u) = 3.04 \end{array}$	$^{+0.41}_{-0.39}(stat)^{+0.24}_{-0.19}(sys)$ $4^{+0.69}_{-0.66}(stat)^{+0.40}_{-0.47}(sys)$	$(st)\pm 0.15(\mathit{norm})$	%)%	3.8σ3.9σ	

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

• 4.7σ

Int oc	roduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \end{array}$	$B ightarrow {\cal D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag ○○○●	Summary 00
F	it resu	lts				
(Obtained	d branching	ratios		Stat.	
	 B(B⁺) B(B⁺) 	$egin{array}{lll} ightarrow ar{D}^0 au^+ u) = 1.51 \ ightarrow ar{D}^{*0} au^+ u) = 3.0 \end{array}$	$^{+0.41}_{-0.39}(stat)^{+0.24}_{-0.19}(sy)$ $4^{+0.69}_{-0.66}(stat)^{+0.40}_{-0.47}(sy)$	$(st)\pm 0.15(\mathit{norm})$	% • 3)% • 3	

• $\mathcal{B}(B^0 \to D^- \tau^+ \nu) = 1.01^{+0.46}_{-0.41}(stat)^{+0.13}_{-0.11}(syst) \pm 0.10(norm)\%$

• $\mathcal{B}(B^0 \to D^{*-}\tau^+\nu) = 2.56^{+0.75}_{-0.66}(stat)^{+0.31}_{-0.22}(syst) \pm 0.10(norm)\%$

Data sample • 604.5fb⁻¹

So charged Higgs?

Deviation from Standard model predictions

• $B^+ \rightarrow \bar{D}^0 \tau^+ \nu$: 1.6 $\sigma, B^0 \rightarrow D^- \tau^+ \nu$: 0.5 σ

• Measurements agree with the SM within the errors

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

4.7σ

Introduction 0000	$B ightarrow D^* \ell^+ u_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Ha	adronic tag ⊃O●	Summary 00	
Fit resu	lts						
Obtained	d branching	ratios			Stat. s		
● <i>B</i> (<i>B</i> ⁺	$ ightarrow ar{D}^0 au^+ u) = 1.5^{-1}$	$ ^{+0.41}_{-0.39}(stat)^{+0.24}_{-0.19}(sy$	$st) \pm 0.15(norm)^{t}$	%	3.8d		
● <i>B</i> (<i>B</i> ⁺	$ ightarrow ar{D}^{*0} au^+ u) = 3.0$	$04^{+0.69}_{-0.66}(stat)^{+0.40}_{-0.47}(s$	yst) \pm 0.22(norm)%	3.9a		
B(B ⁰ -	$\rightarrow D^- \tau^+ \nu) = 1.0$	$1^{+0.46}_{-0.41}(stat)^{+0.13}_{-0.44}(sv$	$(st) \pm 0.10(norm)$	%	2.6a		

•
$$\mathcal{B}(B^0 \to D^{*-}\tau^+\nu) = 2.56^{+0.75}_{-0.66}(stat)^{+0.31}_{-0.22}(syst) \pm 0.10(norm)\%$$

• 4.7σ

Introduction	$B ightarrow D^* \ell^+ u_\ell$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summary ●O

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	$B ightarrow {\it D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summa ●○
			at Belle		
		0^3 34.4 ± 0.2 ± 1.0		.4 ± 2.2	

• Similar, new measurement of B⁺ almost ready

 $B
ightarrow D^{(*)} au^+
u_\ell$ - hadronic tag

$$\begin{split} \mathcal{B}(B^+ \to \bar{D}^0 \tau^+ \nu) &= 1.51^{+0.41}_{-0.39}(\textit{stat})^{+0.24}_{-0.19}(\textit{syst}) \pm 0.15(\textit{norm})\% \\ \mathcal{B}(B^+ \to \bar{D}^{*0} \tau^+ \nu) &= 3.04^{+0.69}_{-0.66}(\textit{stat})^{+0.40}_{-0.47}(\textit{syst}) \pm 0.22(\textit{norm})\% \\ \mathcal{B}(B^0 \to D^- \tau^+ \nu) &= 1.01^{+0.46}_{-0.44}(\textit{stat})^{+0.13}_{-0.11}(\textit{syst}) \pm 0.10(\textit{norm})\% \\ \mathcal{B}(B^0 \to D^{*-} \tau^+ \nu) &= 2.56^{+0.75}_{-0.66}(\textit{stat})^{+0.31}_{-0.22}(\textit{syst}) \pm 0.10(\textit{norm})\% \end{split}$$

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summar ●○
B ⁰	$ ightarrow {\it D}^{*-} \ell^+ u$ an	id $B^+ o ar{D}^{*0} \ell^+$ i	ν at Belle		
		B ⁰	B ⁺		
	ρ^2	$1.293 \pm 0.045 \pm 0.045$.029 1.376 ± 0.07	74 ± 0.056	
	<i>R</i> ₁ (1)	$1.495 \pm 0.050 \pm 0.050$.062 1.620 ± 0.09	01 ± 0.092	
	<i>R</i> ₂ (1)	$0.844 \pm 0.034 \pm 0.034$.019 0.805 ± 0.06	64 ± 0.036	
	$\mathcal{F}(1) V_{cb} >$	$< 10^3$ 34.4 \pm 0.2 \pm 1.0	0 35.0 ± 0.4	4 ± 2.2	

Similar, new measurement of B⁺ almost ready

 $B
ightarrow D^{(*)} au^+
u_\ell$ - hadronic tag

$$\begin{split} \mathcal{B}(B^+ \to \bar{D}^0 \tau^+ \nu) &= 1.51^{+0.41}_{-0.39}(\textit{stat})^{+0.24}_{-0.19}(\textit{syst}) \pm 0.15(\textit{norm})\% \\ \mathcal{B}(B^+ \to \bar{D}^{*0} \tau^+ \nu) &= 3.04^{+0.69}_{-0.66}(\textit{stat})^{+0.40}_{-0.47}(\textit{syst}) \pm 0.22(\textit{norm})\% \\ \mathcal{B}(B^0 \to D^- \tau^+ \nu) &= 1.01^{+0.46}_{-0.44}(\textit{stat})^{+0.13}_{-0.11}(\textit{syst}) \pm 0.10(\textit{norm})\% \\ \mathcal{B}(B^0 \to D^{*-} \tau^+ \nu) &= 2.56^{+0.75}_{-0.66}(\textit{stat})^{+0.31}_{-0.22}(\textit{syst}) \pm 0.10(\textit{norm})\% \end{split}$$

Introduction	$\begin{array}{c} B \to D^* \ell^+ \nu_\ell \\ \circ \end{array}$	$B ightarrow D^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag	Summar ●○
B ⁰ -	$ ightarrow {\it D}^{*-} \ell^+ u$ and	$B^+ o ar{D}^{*0} \ell^+ u$	at Belle		
		B ⁰	B-	+	
	ρ^2	1.293 ± 0.045 ± 0.02	$1.376 \pm 0.0^{\circ}$	74 ± 0.056	
	<i>R</i> ₁ (1)	$1.495 \pm 0.050 \pm 0.06$	1.620 ± 0.09	91 \pm 0.092	
	<i>R</i> ₂ (1)	$0.844 \pm 0.034 \pm 0.01$	9 0.805 ± 0.0	64 ± 0.036	
	$\mathcal{F}(1) V_{cb} imes T$	10 ³ 34.4 \pm 0.2 \pm 1.0	35.0 ± 0.	.4 ± 2.2	

• Similar, new measurement of *B*⁺ almost ready

 $m{B}
ightarrow m{D}^{(*)} au^+
u_\ell$ - hadronic tag

$$\begin{split} &\mathcal{B}(B^+ \to \bar{D}^0 \tau^+ \nu) = \quad 1.51^{+0.41}_{-0.19}(\textit{stat}) {}^{+0.24}_{-0.19}(\textit{syst}) \pm 0.15(\textit{norm})\% \\ &\mathcal{B}(B^+ \to \bar{D}^{*0} \tau^+ \nu) = \quad 3.04^{+0.69}_{-0.66}(\textit{stat}) {}^{+0.40}_{-0.47}(\textit{syst}) \pm 0.22(\textit{norm})\% \\ &\mathcal{B}(B^0 \to D^- \tau^+ \nu) = \quad 1.01^{+0.46}_{-0.44}(\textit{stat}) {}^{+0.13}_{-0.11}(\textit{syst}) \pm 0.10(\textit{norm})\% \\ &\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu) = \quad 2.55^{+0.75}_{-0.65}(\textit{stat}) {}^{+0.32}_{-0.27}(\textit{syst}) \pm 0.10(\textit{norm})\% \end{split}$$

Introduction B 0000 0		В — 000	$\rightarrow D^* \ell^+ \nu_{\ell}$	В	$\to D^{(*)} \tau^+ \nu_\ell$	Inclusive tag	Hadronic tag	Summar ●○
	$B^0 ightarrow$	→ D *-	$\ell^+ u$ and	<i>B</i> +	$ ightarrow ar{D}^{*0} \ell^+ u$ a	t Belle		
		=			B ⁰	B	+	
		_	ρ ²		$1.293 \pm 0.045 \pm 0.029$	1.376 ± 0.0	0.056	
			<i>R</i> ₁ (1)		$1.495 \pm 0.050 \pm 0.062$	1.620 ± 0.0	91 \pm 0.092	
			R ₂ (1)		$0.844 \pm 0.034 \pm 0.019$	0.805 ± 0.0	064 ± 0.036	
		_	$\mathcal{F}(1) V_{cb} \times 1$	0 ³	$34.4\pm0.2\pm1.0$	35.0 ± 0	.4 ± 2.2	

• Similar, new measurement of *B*⁺ almost ready

 $B \to D^{(*)}\tau^{+}\nu_{\ell} \text{ - hadronic tag}$ $B \to D^{(*)}\tau^{+}\nu_{\ell} \text{ - hadronic tag}$ $B(B^{+} \to \bar{D}^{0}\tau^{+}\nu) = 1.51^{+0.41}_{-0.39}(\text{stat})^{+0.24}_{-0.19}(\text{syst}) \pm 0.15(\text{norm})\%$ $B(B^{+} \to \bar{D}^{*0}\tau^{+}\nu) = 3.04^{+0.66}_{-0.66}(\text{stat})^{+0.40}_{-0.41}(\text{syst}) \pm 0.22(\text{norm})\%$ $B(B^{0} \to D^{-}\tau^{+}\nu) = 1.01^{+0.46}_{-0.41}(\text{stat})^{+0.13}_{-0.11}(\text{syst}) \pm 0.10(\text{norm})\%$ $B(B^{0} \to D^{*-}\tau^{+}\nu) = 2.56^{+0.75}_{-0.66}(\text{stat})^{+0.31}_{-0.22}(\text{syst}) \pm 0.10(\text{norm})\%$

Introduction	$B ightarrow D^* \ell^+ u_\ell$	$B ightarrow {\cal D}^{(*)} au^+ u_\ell$	Inclusive tag	Hadronic tag
0000	00000000		0000	0000

Thanks for your attention!

Summary

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Semileptonic $b \rightarrow c$ Decays at Belle

Wolfgang Dungel

Institute for high energy physics Austrian Academy of Sciences

on behalf of the Belle collaboration

EPS HEP 2009, July 17, 2009

COACHE Austrian Academy of Sciences

Appendix 00000

$B^0 \to D^{*-} \ell^+ \nu$

 $B^+ \to D^{*0} \ell^+ \nu$

Title 0

The Belle Collaboration

Appendix

$B^0 \to D^{*-} \ell^+ \nu$

 $B^+ \to D^{*0} \ell^+ \nu$

Hadronic Tag

Title o

The Belle Detector

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at
Appendix 00000	$B^0 ightarrow D^{*-} \ell^+ u$	$B^+ ightarrow D^{*0} \ell^+ u$	Hadronic Tag O	Title ○
Tags at B	elle			

- Only signal reconstructed
- High efficiency

- Good statistics, clean events
- Kinematics not fully determined

- Kinematics fully determined
- Low statistics

< 🗇 ▶

<mark>Appendix</mark> ୦୦୦●୦	$B^0 \to D^{*-} \ell^+ \nu$	$B^+ ightarrow D^{*0} \ell^+ u$	Hadronic Tag o	Title ○
Tags at E	Belle			

Untagged

- Only signal reconstructed
- High efficiency

Semileptonic tag

- Good statistics, clean events
- Kinematics not fully determined

Full reconstruction tag

- Kinematics fully determined
- Low statistics

4 日

Appendix ୦୦୦●୦	$B^0 ightarrow D^{*-} \ell^+ u$	$B^+ ightarrow D^{*0} \ell^+ u$	Hadronic Tag o	Title ○
Tags at	Belle			

Untagged

- Only signal reconstructed
- High efficiency

Semileptonic tag

- Good statistics, clean events
- Kinematics not fully determined

Full reconstruction tag

- Kinematics fully determined
- Low statistics

ヨト イヨト ヨヨ わへの

$B^0 \rightarrow D^{*-} \ell^+ \nu$

 $B^+ \rightarrow D^{*0} \ell^+ \nu$

200

Nobel prize 2008

2008年ノーベル物理学賞受賞!小林益川理論とは?

クォークとは何ですか?

0 反映子とは何ですか?

CF対称性の現れ」とは何ですか?

① 小林台川理論とは何ですか?

2 どうしてクォークから種類必要なのですか? P. ROFRANDSTLEVEL, 2 105 4 88574, 2011

sore-

持ちに待った実験結果! B ファクトリーによる検証 CP 対称性の破れはどのように測定したので すか?

どうして小林益川理論が正しいとわかった

に合わせる数字が描したさらなまでも数目し、多単数字の (F) 細の多単現したころによって、単葉2000 (B) 日ちって、よう

小林雄川環論は森羅万象を説明できるんで

大人数の研究グループの中で、個性を発揮 するチャンスはありますか?

うなナキンスにおりますが ス市は広都市市場外展し、まさに入りませんしてかり上げられた。 等に、あられたしたくだくとくから前にただしたとしてい、「市田 いどうシママネスのシリ、などに開始になった。他に 市台になったまでするため、人にため着した時代で 時台になられるとしてい、ませていたからの美術に行いたか。

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

 $B^+ \to D^{*0} \ell^+ \nu$

Hadronic Tag

Title

HFAG average, Summer 2008

 $B^+ \to D^{*0} \ell^+ \nu$

HQET and parametrization

Helicity amplitudes

•
$$H_{\pm} = f_{\pm}(w) h_{A_1}(w) \left(1 \mp \sqrt{\frac{w-1}{w+1}} R_1(w)\right)$$

• $H_0 = f_0(w) h_{A_1}(w) \left(1 + \frac{w-1}{1 - \frac{m_{D^*}}{m_B}} \left(1 - R_2(w)\right)\right)$

Parametrization by CLN

•
$$h_{A_1}(w) = h_{A_1}(1) (1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3)$$

 $z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$
• $R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2$
• $R_2(w) = R_2(1) + 0.11(w - 1) = 0.06(w - 1)^2$

•
$$R_2(w) = R_2(1) + 0.11(w-1) - 0.06(w-1)$$

$B^0 \rightarrow D^{*-} \ell^+ \nu$ $B^+ \rightarrow D^{*0} \ell^+ \nu$ 00000000000000

Resolutions in kinematic variables

- Resolutions are approximately double gaussians
- Almost identical for B^0 and B^+

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Resolutions in kinematic variables

- Resolutions are approximately double gaussians
- Almost identical for B^0 and B^+

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

$B^{0} \rightarrow D^{*-} \ell^{+} \nu$

 $B^+ \to D^{*0} \ell^+ \nu$

Resolutions in kinematic variables

- For easier comparison: Gaussian assumption
- $\delta_{\rm w} = 0.025, \, \delta_{\cos \theta_{\ell}} = 0.052, \, \delta_{\cos \theta_{V}} = 0.047, \, \delta_{\chi} = 6.47^{\circ}$

Appendix 00000	$B^{0} \rightarrow D^{*-} \ell^{+} \nu$	$\begin{array}{ccc} B^+ \rightarrow D^{*0} \ell^+ \nu \\ \circ \circ$	Hadronic Tag O	Title ○
Color sche	eme			
		Data, OnRes - Cont		
		Signal		
		MC background, D**		
		MC background, Unc	corr.	
		MC background, Sig.	.corr.	
		MC background, Fak	e I	
		MC background, Fak	e D*	
		< □ >	・四・・ヨ・ 三日	596

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

$B^{0} \rightarrow D^{*-} \ell^{+} \nu$

Background investigation

Investigated using MC

- Fake D*
- Fake Lepton
- Uncorrelated
- $B \rightarrow D^{**}\ell\nu, B \rightarrow D^*X\ell\nu$
- Signal correlated

Off-resonance data

• Continuum: qq decays

HMCMLL, TFractionFitter

- Determine norm of MC components from fit to data
- Use one dimensional distribution cos θ_{B⁰,D^{*}ℓ}

 $B^0 \to D^{*-} \ell^+ \nu$

Hadronic Tag

Title

TFractionFitter result - $K\pi$, *e* sample

 $B^0 \to D^{*-} \ell^+ \nu$

Hadronic Tag

Title o

TFractionFitter result - $K\pi$, μ sample

 $B^0 \to D^{*-} \ell^+ \nu$

Hadronic Tag

Title

TFractionFitter result - $K3\pi$, *e* sample

 $B^0 \to D^{*-} \ell^+ \nu$

Hadronic Tag

Title o

TFractionFitter result - $K3\pi$, μ sample

$B^0 \to D^{*-} \ell^+ \nu$

 $B^+ \to D^{*0} \ell^+ \nu$

Hadronic Tag

Title

Background and signal purity

Fractions of the components

sample	Кπ, е	$K\pi, \mu$	КЗπ, е	$K3\pi, \mu$
signal	(80.95 ± 1.06)%	$(80.92 \pm 0.98)\%$	(73.17 ± 1.71)%	$(72.22 \pm 1.46)\%$
D**	(4.73 ± 0.87)%	$(1.24 \pm 0.85)\%$	$(5.21 \pm 1.18)\%$	$(2.85 \pm 1.10)\%$
uncorrelated	$(5.36 \pm 0.27)\%$	$(4.38 \pm 0.29)\%$	$(5.42 \pm 0.58)\%$	$(4.17 \pm 0.54)\%$
correlated	$(1.69 \pm 0.26)\%$	$(2.42 \pm 0.28)\%$	$(2.04 \pm 0.69)\%$	$(2.25 \pm 0.59)\%$
fake ℓ	0.68 % (fixed)	3.62% (fixed)	0.72% (fixed)	4.04% (fixed)
fake D*	2.96% (fixed)	2.91% (fixed)	$(8.78 \pm 2.63)\%$	$(9.63 \pm 2.15)\%$
continuum	3.62% (fixed)	4.51% (fixed)	4.81% (fixed)	4.87% (fixed)

Back to overview page

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Covariances between bins of the marginal distributions

Covariances

$$\operatorname{Cov}_{ij} = \operatorname{Cov}(n_i, n_j) = N \cdot (p_{ij} - p_i p_j), \forall i \neq j$$

- N: Total number of events
- n_{ij}: Bin content of the bin (i, j) of 2d histogram
- *n_k*: Bin content of the bin *k* of a 1d histogram
- $p_x = \frac{n_x}{N}$

Special cases

- Independent variables: $p_{ij} = p_i p_j \rightarrow \text{Cov}_{ij} \equiv 0$
- Perfect anti-correlation: $n_{ij} = 0 \rightarrow Cov_{ij} < 0$
- Positive correlation: $p_{ij} > p_i p_j \rightarrow \text{Cov}_{ij} > 0$

$B^0 \rightarrow D^{*-} \ell^+ \nu$ $B^+ \rightarrow D^{*0} \ell^+ \nu$

Results for all subsamples

Fit results for all subsamples and the total sample

sample	Кπ, е	$K\pi,\mu$	К3π, е
ρ^2	$1.329 \pm 0.072 \pm 0.017$	$1.221 \pm 0.075 \pm 0.046$	$1.238 \pm 0.133 \pm 0.053$
<i>R</i> ₁ (1)	$1.455 \pm 0.077 \pm 0.046$	$1.608 \pm 0.087 \pm 0.099$	$1.085 \pm 0.125 \pm 0.044$
R ₂ (1)	$0.782 \pm 0.055 \pm 0.014$	$0.853 \pm 0.055 \pm 0.027$	$0.980 \pm 0.087 \pm 0.027$
$R_{K3\pi/K\pi}$	2.153 (fixed)	2.153 (fixed)	2.153 (fixed)
$\mathcal{B}(B^0)$	$4.43 \pm 0.03 \pm 0.25$	$4.41 \pm 0.03 \pm 0.26$	$4.42 \pm 0.04 \pm 0.25$
$\mathcal{F}(1) V_{cb} $	$34.3 \pm 0.4 \pm 1.0$	$33.5 \pm 0.4 \pm 1.0$	$35.6\pm0.8\pm1.3$
$\chi^2/n.d.f.$	29.2/36	37.4/36	19.2/36
P_{χ^2}	78.2%	40.4%	99.0%
sample	$K3\pi, \mu$		total sample
ρ^2	$1.436 \pm 0.121 \pm 0.062$		$1.293 \pm 0.045 \pm 0.029$
<i>R</i> ₁ (1)	$1.643 \pm 0.163 \pm 0.112$		$1.495 \pm 0.050 \pm 0.062$
R ₂ (1)	$0.842 \pm 0.105 \pm 0.038$		$0.844 \pm 0.034 \pm 0.019$
$R_{K3\pi/K\pi}$	2.153 (fixed)		$\textbf{2.153} \pm \textbf{0.011}$
$\mathcal{B}(B^0)$	$4.47 \pm 0.04 \pm 0.26$		$4.42 \pm 0.03 \pm 0.25$
$\mathcal{F}(1) V_{cb} $	$35.6 \pm 0.7 \pm 1.3$		$34.4\pm0.2\pm1.0$
$\chi^2/n.d.f.$	17.9/36		138.8/155
P_{χ^2}	99.5%		82.0%

▲ Back to results page

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ■ ■ ● ● EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

Preliminary systematic error

	ρ^2	$R_{1}(1)$	$R_{2}(1)$	$\mathcal{B}(B^0)$	$\mathcal{F}(1) V_{cb} $
Stat. error	0.050	0.060	0.043	0.030	0.22
D**	0.015	0.038	0.011	0.051	0.25
Uncorr.	0.009	0.028	0.002	0.003	0.04
Sig.corr.	0.003	0.003	0.007	0.028	0.14
Fake ℓ	0.020	0.037	0.009	0.002	0.04
Fake D*	0.012	0.011	0.009	0.034	0.33
Continuum	0.003	0.008	0.000	0.001	0.02
Trk., det.eff.	-	-	-	0.221	0.86
$\mathcal{B}(D^0)$	-	-	-	0.081	0.31
$\mathcal{B}(D^*)$	-	-	-	0.033	0.13
B ⁰ life time	-	-	-	0.026	0.10
N _{BB}	-	-	-	0.036	0.14
$f_{+-}/f_{0\bar{0}}$	0.003	0.011	0.005	0.001	0.04
Syst. error	0.029	0.062	0.019	0.251	1.04

Back to results page

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

A	р	р	е	n	d	b	(
0	C	òc	0	D	0		

B^+	\rightarrow	D *	0_{\ell}	÷	ν			
oc	000	00	00	C	0	0	С	0

Correlations

Correlations between the fit parameters

	Correlations						
Parameters	Global	ρ^2	$R_{1}(1)$	$R_{2}(1)$	$R_{K3\pi/K\pi}$		
$\mathcal{F}(1) V_{cb} $	0.99168	0.635	-0.285	-0.220	0.011		
ρ^2	0.99732		0.388	-0.870	0.040		
$R_{1}(1)$	0.95366			-0.511	0.001		
$R_{2}(1)$	0.99342				0.002		
$R_{K3\pi/K\pi}$	0.41362						

Back to results page

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix 00000	$B^0 ightarrow D^{*-} \ell^+ u$	$\begin{array}{c} B^+ \to D^{*0} \ell^+ \nu \\ \bullet \circ \circ$	Hadronic Tag o	Title ⊙
Color sch	eme			
+	— (OnRes	s - Continuu	m) data	
	MC bad	ckground, Si ckaround. D	ig.corr. **	
	MC ba	ckground, U	ncorr.	
	MC ba	ckground, Fa	ake Leptor	ו
	MC ba	ckground, C	omb D*	
	MC ba	ckground, Fa		

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

$B^0 \to D^{*-} \ell^+ \nu$

Background investigation

Investigated using MC

- Fake D⁰
- Combinatoric D*
- Fake Lepton
- Uncorrelated
- $B \rightarrow D^{**}\ell\nu, B \rightarrow D^*X\ell\nu$
- Signal correlated

Off-resonance data

• Continuum: qq decays

HMCMLL, TFractionFitter

- Determine norm of MC components from fit to data
- Use 2D distribution $\cos \theta_{B^0, D^* \ell}$ vs. Δm

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Plot of TFractionFitter result - $D^0 \rightarrow K3\pi$ modes

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

$B^0 \rightarrow D^{*-} \ell^+ \nu$ $B^+ \rightarrow D^{*0} \ell^+ \nu$

Background and signal purity

Fractions of the components

	Кπ, е	$K\pi, \mu$	К3π, е	$K3\pi, \mu$
Raw yield	13035	12262	16989	16350
Signal events	8133 ± 205	7447 ± 201	5987 ± 229	5539 ± 222
Signal	(62.39 ± 1.57)%	(60.73 ± 1.64)%	(35.24 ± 1.35)%	(33.88 ± 1.36)%
Signal correlated	$(1.27 \pm 0.31)\%$	$(1.46 \pm 0.32)\%$	$(1.16 \pm 0.26)\%$	$(1.34 \pm 0.31)\%$
D**	$(0.77 \pm 0.98)\%$	$(0.73 \pm 0.98)\%$	$(0.39 \pm 0.50)\%$	$(0.36 \pm 0.47)\%$
Uncorrelated	$(4.97 \pm 0.54)\%$	$(4.25 \pm 0.45)\%$	$(3.48 \pm 0.41)\%$	$(3.30 \pm 0.38)\%$
Fake ℓ	$(0.31 \pm 0.10)\%$	$(1.94 \pm 0.59)\%$	$(0.18 \pm 0.06)\%$	$(0.95 \pm 0.29)\%$
Combinatoric D*0	$(24.76 \pm 0.51)\%$	$(24.30 \pm 0.48)\%$	$(16.35 \pm 0.69)\%$	$(15.19 \pm 0.67)\%$
Fake D ⁰	(2.91 ± 0.25)%	$(3.12 \pm 0.23)\%$	$(38.53 \pm 0.50)\%$	$(39.45 \pm 0.51)\%$
Continuum	$(2.63 \pm 0.43)\%$	$(3.46 \pm 0.51)\%$	$(4.68 \pm 0.50)\%$	$(6.14 \pm 0.56)\%$

A Back to overview page
 A

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

$B^0 \to D^{*-} \ell^+ \nu$ $B^+ \to D^{*0} \ell^+ \nu$

Results for all subsamples

	$D^0 o K\pi, \ell = e$	$D^0 \to K\pi, \ell = \mu$	$D^0 ightarrow K3\pi, \ell = e$
ρ^2	$1.199 \pm 0.125 \pm 0.051$	$1.370 \pm 0.129 \pm 0.057$	$1.723 \pm 0.162 \pm 0.062$
R ₁ (1)	$1.507 \pm 0.135 \pm 0.095$	$1.568 \pm 0.158 \pm 0.089$	$1.840 \pm 0.271 \pm 0.110$
R ₂ (1)	$0.868 \pm 0.093 \pm 0.036$	$0.839 \pm 0.110 \pm 0.032$	$0.585 \pm 0.198 \pm 0.049$
$R_{K3\pi/K\pi}$	2.072	2.072	2.072
$\mathcal{B}(B^+ \to \bar{D}^{*0}\ell^+ \nu_\ell)$	$4.91 \pm 0.05 \pm 0.58$	$4.77 \pm 0.05 \pm 0.57$	$4.83 \pm 0.07 \pm 0.57$
$\mathcal{F}(1) V_{cb} \times 10^3$	$34.3\pm0.6\pm2.2$	$35.0 \pm 0.6 \pm 2.3$	$36.5 \pm 1.0 \pm 2.4$
$\chi^2/\text{ndf.}$	48.3 / 36	40.6 / 36	39.6 / 36
P_{χ^2}	8.3 %	27.5 %	31.3 %
	$D^0 \rightarrow K3\pi, \ell = \mu$		Fit to total sample
ρ^2	$1.434 \pm 0.209 \pm 0.086$		$1.376 \pm 0.074 \pm 0.056$
R ₁ (1)	$1.813 \pm 0.273 \pm 0.107$		$1.620 \pm 0.091 \pm 0.093$
R ₂ (1)	$0.764 \pm 0.191 \pm 0.052$		$0.805 \pm 0.064 \pm 0.037$
$R_{K3\pi/K\pi}$	2.072		2.072 ± 0.023
$\mathcal{B}(B^{+'} \rightarrow \bar{D}^{*0}\ell^+ \nu_{\ell})$	$4.83 \pm 0.07 \pm 0.58$		$4.84 \pm 0.04 \pm 0.57$
$\mathcal{F}(1) V_{cb} imes 10^3$	$34.8\pm1.0\pm2.3$		$35.0\pm0.4\pm2.2$
$\chi^2/\text{ndf.}$	44.2 / 36		187.8 / 155
P_{χ^2}	16.3 %		3.7 %

Back to results page

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p> EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

A	р	р	e	n	d	i	Х	
0	C	00	50	D	0			

$B^0 \rightarrow D^{*-} \ell^+ \nu$ $B^+ \rightarrow D^{*0} \ell^+ \nu$

00000000000000

Breakdown of the preliminary systematic error

	ρ^2	<i>R</i> ₁ (1)	<i>R</i> ₂ (1)	$\mathcal{F}(1) V_{cb} imes 10^3$	${\cal B}(B^+ o ar D^{*0} \ell^+ u_\ell)$
Value	1.376	1.620	0.805	34.98	4.841
Statistical Error	0.074	0.091	0.064	0.37	0.044
π_s^0 & tracking	0.027	0.025	0.012	1.97	0.491
LeptonID	0.012	0.024	0.011	0.39	0.096
Norm - Signal Corr.	0.007	0.002	0.007	0.13	0.038
Norm - D**	0.005	0.023	0.002	0.04	0.041
Norm - Uncorr	0.014	0.074	0.025	0.28	0.023
Norm - Fake ℓ	0.017	0.028	0.010	0.05	0.024
Norm - Comb D ^{*0}	0.008	0.014	0.008	0.11	0.028
Norm - Fake D ⁰	0.009	0.014	0.007	0.06	0.020
Norm - Continuum	0.004	0.005	0.001	0.00	0.003
Shape - Uncorr	0.014	0.003	0.005	0.10	
Shape - Comb D* ⁰	0.027	0.005	0.008	0.21	
Shape - Fake D ⁰	0.024	0.003	0.008	0.17	
${\cal B}(D^0 o K \pi)$				0.32	0.089
${\cal B}(D^{*0} ightarrow D^0 \pi^0)$				0.82	0.227
B^+ life time				0.12	0.033
$N(\Upsilon(4S))$				0.14	0.040
f_{+-}/f_{00}	0.003	0.006	0.003	0.15	0.043

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ● EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

Appendix 00000	$B^0 \to D^{*-} \ell^+ \nu$	$B^+ \to D^{*0} \ell^+ \nu$	Hadronic Tag O	Title ○
Correla	tions			

Correlations between the fit parameters

• Table shows statistical/systematic/total correlation coefficients

	$\mathcal{F}(1) V_{cb} $	ρ^2	R ₁ (1)	R ₂ (1)
$\mathcal{F}(1) V_{cb} $	1.000	0.455/0.399/0.295	-0.222 /-0.219/-0.179	-0.054/-0.024/-0.019
ρ^2		1.000	0.648/ 0.413/ 0.540	-0.889/-0.751/-0.841
R ₁ (1)			1.000	-0.749/-0.873/-0.763
$R_{2}(1)$				1.000

Back to results page

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

$B^0 \rightarrow D^{*-} \ell^+ \nu$

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ 00000000000000

$p_{\pi_s^0}$ distribution - $K\pi$, *e* channel

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

$B^0 \to D^{*-} \ell^+ \nu$

 $B^+ \to D^{*0} \ell^+ \nu$

Hadronic Tag

Title ○

$p_{\pi_s^0}$ distribution - $K\pi, \mu$ channel

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

$B^0 \to D^{*-} \ell^+ \nu$

 $B^+ \to D^{*0} \ell^+ \nu$

Hadronic Tag

Title o

$p_{\pi_s^0}$ distribution - $K3\pi$, *e* channel

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

$B^0 \to D^{*-} \ell^+ \nu$

 $B^+ \to D^{*0} \ell^+ \nu$

Hadronic Tag

Title o

$p_{\pi_s^0}$ distribution - $K3\pi, \mu$ channel

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

$B^0 ightarrow D^*^- \ell^+ u$	$B^+ ightarrow D^{*0} \ell^+ u$	Hadronic Tag
0000000000000	00000000000000000	0

Check of Γ_L

Appendix 00000

	$D^0 o K\pi, \ell = e$	$D^0 \to K\pi, \ell = \mu$
$\Gamma^{00}, w \in (1, \frac{13}{12})$	$(1.025\pm0.119\pm0.120){\times}10^{-4}$	$(1.176\pm0.146\pm0.137){ imes}10^{-4}$
$\Gamma^{00}, w \in (\frac{13}{12}, \frac{7}{6})$	$(1.544 \pm 0.165 \pm 0.176) imes 10^{-4}$	(1.689 \pm 0.177 \pm 0.192)×10 ⁻⁴
$\Gamma^{00}, w \in (\frac{7}{6}, \frac{15}{12})$	(2.238 \pm 0.213 \pm 0.237) $ imes$ 10 $^{-4}$	(2.121 \pm 0.216 \pm 0.238)×10^{-4}
$\Gamma^{00}, w \in (\frac{15}{12}, \frac{8}{6})$	(2.677 \pm 0.244 \pm 0.268)×10^{-4}	(2.059 \pm 0.240 \pm 0.228)×10^{-4}
$\Gamma^{00}, w \in (\frac{8}{6}, \frac{17}{12})$	(2.406 \pm 0.235 \pm 0.256) $ imes$ 10 $^{-4}$	(2.426 \pm 0.263 \pm 0.263) $ imes$ 10 $^{-4}$
$\Gamma^{00}, w \in (\frac{17}{12}, 1.5)$	(2.907 \pm 0.250 \pm 0.301) $\times 10^{-4}$	(2.384 \pm 0.273 \pm 0.278) $\times 10^{-4}$

	fit to total sample	central value of parametrized fit
$\Gamma^{00}, w \in (1, \frac{13}{12})$	$(1.087\pm 0.092\pm 0.123){\times}10^{-4}$	1.062×10^{-4}
$\Gamma^{00}, w \in (\frac{13}{12}, \frac{7}{6})$	(1.611 \pm 0.121 \pm 0.179)×10 ⁻⁴	1.812×10^{-4}
$\Gamma^{00}, w \in (\frac{7}{6}, \frac{15}{12})$	(2.186 \pm 0.151 \pm 0.238)×10^{-4}	2.175×10^{-4}
$\Gamma^{00}, w \in (\frac{15}{12}, \frac{8}{6})$	(2.406 \pm 0.172 \pm 0.262)×10 ⁻⁴	2.379×10^{-4}
$\Gamma^{00}, w \in (\frac{8}{6}, \frac{17}{12})$	(2.421 \pm 0.175 \pm 0.258)×10^{-4}	2.483 ×10 ⁻⁴
$\Gamma^{00}, w \in (\frac{17}{12}, 1.5)$	$(2.683\pm 0.186\pm 0.298){\times}10^{-4}$	2.514×10^{-4}

Title

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のQで EPS09 - Semileptonic b → c Decays at Belle

$B^0 ightarrow D^{*-} \ell^+ u$	$B^+ ightarrow D^{st 0} \ell^+ u$	Hadronic Tag
0000000000000	000000000000	0

Check of Γ_T

Appendix 00000

	$D^0 o K \pi.\ell = e$	$D^0 \to K \pi.\ell = \mu$
$\Gamma^{T}, w \in (1, \frac{13}{12})$	$(2.267\pm 0.153\pm 0.264)\!\times\!10^{-4}$	(1.939 \pm 0.152 \pm 0.228)×10^{-4}
$\Gamma^{T}, w \in (\frac{13}{12}, \frac{7}{6})$	$(2.695 \pm 0.214 \pm 0.307) imes 10^{-4}$	(3.015 \pm 0.216 \pm 0.348) $ imes$ 10 $^{-4}$
$\Gamma^{T}, w \in (\frac{7}{6}, \frac{15}{12})$	(2.786 \pm 0.253 \pm 0.310) $ imes$ 10 $^{-4}$	(2.678 \pm 0.261 \pm 0.299)×10 ⁻⁴
$\Gamma^{T}, w \in (\frac{15}{12}, \frac{8}{6})$	(2.298 \pm 0.249 \pm 0.246) $ imes$ 10 $^{-4}$	(2.673 \pm 0.295 \pm 0.290)×10^{-4}
$\Gamma^{T}, w \in (\frac{8}{6}, \frac{17}{12})$	$(1.557 \pm 0.242 \pm 0.162) imes 10^{-4}$	(1.369 \pm 0.250 \pm 0.144)×10^{-4}
$\Gamma^{T}, w \in (\frac{17}{12}, 1.5)$	(0.588 \pm 0.205 \pm 0.056) $\times 10^{-4}$	(0.862 \pm 0.284 \pm 0.099)×10^{-4}

	fit to total sample	central value of parametrized fit
$\Gamma^{T}, w \in (1, \frac{13}{12})$	$(2.117\pm0.108\pm0.248){\times}10^{-4}$	1.975×10^{-4}
$\Gamma^{T}, w \in (\frac{13}{12}, \frac{7}{6})$	(2.865 \pm 0.152 \pm 0.327)×10 ⁻⁴	2.908×10^{-4}
$\Gamma^{T}, w \in (\frac{7}{6}, \frac{15}{12})$	(2.732 \pm 0.181 \pm 0.303)×10 ⁻⁴	2.819×10^{-4}
$\Gamma^{T}, w \in (\frac{15}{12}, \frac{8}{6})$	(2.454 \pm 0.191 \pm 0.263)×10 ⁻⁴	2.276 ×10 ⁻⁴
$\Gamma^{T}, w \in (\frac{8}{6}, \frac{17}{12})$	(1.468 \pm 0.174 \pm 0.154)×10 ⁻⁴	1.478×10^{-4}
$\Gamma^{T}, w \in (\frac{17}{12}, 1.5)$	$(0.693\pm0.170\pm0.070){ imes}10^{-4}$	0.547×10^{-4}

A	р	р	e	n	d	i	Х	
0	С	00		D	0			

Title o

Systematics

Source	$ar{D}^0 au^+ u$ [%]	$\bar{D}^{*0}\tau^+\nu[\%]$	$\bar{D}^-\tau^+\nu [\%]$	$ar{D}^{*-} au^+ u$ [%]
M_{mix}^2 shape	+9.10/-7.89	+9.86/-10.7	+6.39/-5.78	+5.80/-6.12
E_{extra}^{ECL} shape	+10.6/-7.58	+7.01/-9.73	+9.03/-7.27	+9.84/-4.97
$D^{**}\ell u$	+0.35/-0.41	+0.75/-0.02	+4.50/-2.56	+0.58/-0.28
$D \leftrightarrow D^*$ cross feed	+7.05/-6.86	+5.12/-5.34	+5.77/-6.01	+3.48/-3.37
${\cal B}(au o \ell u u)$	±0.3	±0.3	±0.3	±0.3
Total	+15.7/-12.9	+13.2/-15.4	+13.3/-11.4	+12.0/-8.58

Semileptonic $b \rightarrow c$ Decays at Belle

Wolfgang Dungel

Institute for high energy physics Austrian Academy of Sciences

on behalf of the Belle collaboration

EPS HEP 2009, July 17, 2009

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

EPS09 - Semileptonic $b \rightarrow c$ Decays at Belle

COACU Austrian Academy of Sciences