Hadronic b \rightarrow c decays

Jarosław Wiechczyński representing the Belle Collaboration

The 2009 Europhysics Conference on High Energy Physics, Kraków

Outline:

- introduction
- $B^{o} \rightarrow D_{s}^{*}h$ decays
- B \rightarrow D_s^(*) K π decays
- conclusions

introduction

KEKB B-factory and Belle detector

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ clean source of exclusive B meson pairs

introduction

Main selection criteria

- Hadron identification
- \mathcal{L}_K (\mathcal{L}_π) likelihood for being K(π) is assigned to each charged track based on the information from CDC, ToF and ACC

e.g. $\mathcal{L}_K/(\mathcal{L}_K + \mathcal{L}_\pi) > 0.6$ applied for Kaons

 Continuum suppression
 separate BB events from qq events (q=u,d,s,c)

• Requirements on intermediate resonances distributions: masses of D_s , ϕ , K^{*0} etc.

```
e.g.
|m_{K+K-} - m_{\phi_WA}| < 10-15 \text{ MeV}
```

• Requirements on: - photon energy ($E_{\gamma} > 100$ MeV) - K_{s}^{0} decay length > 0.5 cm from the IP

introduction

Belle kinematic variables ΔE and M_{BC}

$$\Delta E = \sum_{i} E_{i}^{*} - E_{beam}^{*}$$

$$M_{bc} = \sqrt{E_{beam}^{*2} - (\sum_{i} p_{i}^{*})^{2}}$$

- $\mathrm{E}_{\mathrm{beam}}$ beam energy in the CM frame
- $\Sigma_i {\sf E}_i$ total energy of the B products $\Sigma_i p_i~$ total momentum of the B products

$B^0 \rightarrow D_s^*h$ (h= K, π)

(Abstract no 597)

Motivation:

- Experimental measurement of unitary triangle angles test for the explanation of CP violation in SM
- Extracting ϕ_3 parameter is experimentally challenging issue $R_{D^*\pi}\sin(2\phi_1+\phi_3)$ can be extracted from the timedependent CP violation analysis of the $B^0(\bar{B}^0) \rightarrow D^{*\mp}\pi^{\pm}$

Cabibbo Favored Decay (CFD)

Doubly Cabibbo Suppressed Decay (DCSD)

W-exchange contribution

To extract ϕ_3 we need independent measurement of $R_{D^*\pi}$!!!

$$B^0 \rightarrow D_s^{*}h$$
 (h= K, π)

Motivation cd:

We can measure $R_{D^*\pi}$ basing on SU(3) flavor symmetry between D* and D_s* :

$$R_{D^*\pi} = \tan \theta_c \left(\frac{f_{D^*}}{f_{D^*_s}}\right) \sqrt{\frac{\mathcal{B}(B^0 \to D^{*+}_s \pi^-)}{\mathcal{B}(B^0 \to D^{*-} \pi^+)}}$$

ightarrow We need to measure $B^0 \to D_s^{*+}\pi^- \to no \overline{B}{}^0$ contribution to the same final state \searrow no W-exchange contribution

W-exchange amplitudes contribution for $B^0 \rightarrow D^{*\mp} \pi^{\pm}$ modes should be negligible

Measurement of $\mathcal{B}(B^0 \to D^{*-}_s K^+)$

proceeds only via W-exchange so it can give estimation of the size of the W-exchange diagram

Data sample: 657×10^6 BB pairs

PDF shapes for peeking background fixed from the large MC samples

Fit results for $B^0 \rightarrow D_s^{*+}\pi^-$ and $B^0 \rightarrow D_s^{*-}K^+$

Signal yield extraction: unbinned extended maximum likelihood fit to the ΔE variable Results of the simultaneous fit to the three D_s modes: $\phi\pi^-$, $K^{*0}K$, K^0 , K

$$B^0 \rightarrow D_s^{*+} \pi^-$$
 and $B^0 \rightarrow D_s^{*-} K^+$

Main sources of systematic uncertainties:

- Uncertainty in the branching fraction of the D_s decays (~10%)
- Tracking efficiency (~4%)
- Particle identification efficiency (~3%)
- Photon /K⁰_s detection efficiency (7%/1.1%)
- Uncertainty in the branching fraction of the peeking background modes (~2%)
- Uncertainty in the determination of the signal PDF shape (3.5%)

Results for $B^0 \rightarrow D_s^{*+}\pi^-$ and $B^0 \rightarrow D_s^{*-}K^+$

Preliminary results:

B^0 mode	D_s^+ mode	Efficiency $(\%)$	$N_{\rm sig}$	$\mathcal{B}(10^{-5})$	$\Sigma(\sigma)$
$B^0 \to D_s^{*+} \pi^-$	$D_s^+ \to \phi \pi^+$	15.2	32 ± 8	$1.58 \pm 0.40 \pm 0.24$	3.2
	$D_s^+ \to \bar{K}^* (892)^0 K^+$	7.9	29 ± 10	$2.30 \pm 0.76 \pm 0.35$	2.6
	$D_s^+ \to K_S^0 K^+$	8.0	13 ± 7	$1.78 \pm 0.92 \pm 0.11$	2.2
	Simultaneous	-	-	$1.75 \pm 0.33 \pm 0.20$	6.6
$B^0 \to D_s^{*-} K^+$	$D_s^+ \to \phi \pi^+$	13.4	33 ± 8	$1.81 \pm 0.41 \pm 0.27$	3.2
	$D_s^+ \to \bar{K}^* (892)^0 K^+$	6.4	23 ± 7	$2.22 \pm 0.66 \pm 0.34$	2.8
	$D_s^+ \to K_S^0 K^+$	6.9	14 ± 5	$2.14 \pm 0.80 \pm 0.13$	3.1
	Simultaneous	-	-/	$2.02 \pm 0.33 \pm 0.23$	8.6

Previous results from BaBar :
$$BF(B^0 \rightarrow D_s^{*+}\pi^-) = (2.6 \pm 0.5 \pm 0.3) \times 10^{-5}$$

BF(B⁰ $\rightarrow D_s^{*-}K^+) = (2.4 \pm 0.4 \pm 0.2) \times 10^{-5}$

Phys. Rev. Lett. **98**,081801 (2007) Phys. Rev. D**78**,032005 (2008)

$$R_{D^*\pi} = \tan \theta_c \left(\frac{f_{D^*}}{f_{D^*_s}}\right) \sqrt{\frac{\mathcal{B}(B^0 \to D^{*+}_s \pi^-)}{\mathcal{B}(B^0 \to D^{*-} \pi^+)}} = (2.76 \pm 0.13) \times 10^{-3} \text{ (PDG 2008)}$$
$$\implies = 1.10 \pm 0.02 \text{ (arXiv:hep-lat/0011075)}$$

---> obtained the most precise measurement of $R_{D^{*}\pi}$ so far :

 $R_{D^*\pi} = 1.63 \pm 0.16 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.03 \text{ (th)} \%$

 \rightarrow W-exchange processes seem to be negligible in the R_{D* π}

⁾ K π B

 \bar{b} \bar{c} $D_s^{(*)-}$ B^+ \bar{s} K^+ u

submitted to PRD, hep-ex: arXiv:0903.4956v1

 $B^+ \rightarrow D_s^{(*)-} K^+ \pi^+$ process mediated by the b \rightarrow c quark transition and includes the production of an additional ss pair

Reference channel $B^+ \rightarrow D_s^{(*)+} \overline{D}{}^0 \ (\overline{D}{}^0 \rightarrow K^+ \pi^-)$ - two-body decay with the similar final state

→ already observed by BaBar

B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 100, 171803 (2008)

The intermediate resonances could be formed from the three final-state particles

Possible studies of the invariant mass distributions for the two-body subsystems to search for new resonances.

Data sample: 657 $\times 10^6$ BB pairs

$B^+ \rightarrow D_s^{(*)-}K^+\pi^+$ - fit parametrization

3D unbinned extended maximum likelihood fit to the (ΔE , M_{BC} , $m_{Ds(*)}$) variables

Peeking background in $M(D_s^{(*)}) - D_s^{(*)}$ randomly combined with K, π -- Double Gaussian

Comb. background parametrization: 2nd order polynomials (ΔE , m_{Ds}) and Argus function (M_{BC})

Fit results for $B^+ \rightarrow D_s^- K^+ \pi^+$

3D unbinned extended maximum likelihood fit to the (ΔE , M_{BC} , m_{Ds}) variables

Fit results for $B^+ \rightarrow D_s^{*-}K^+\pi^+$

3D unbinned extended maximum likelihood fit to the (ΔE , M_{BC} , m_{Ds^*}) variables

$B \rightarrow D_{s}^{(*)} K \pi$

Main sources of systematics:

• Uncertainty in the efficiency calculation (~ 7% for D_sK π and ~15% for D_s^{*}K π)

discrepancy between mass distributions of the D_s^(*) K and expected distribution for three-body phase space production

 \rightarrow efficiency variation across M(D_s^(*)K) distribution taken into account!

Background from the M_{bc} sideband

- Tracking efficiency (5%)
- Particle identification efficiency (5%)
- Photon /K⁰_s detection efficiency (5%/4.5%)
- ucertainty in the determination of the signal PDF shape (~ 4% for D_sK π , ~7% for D_s^{*}K π)

Results for $B \rightarrow D_s^{(*)} K \pi$

Decay	Signal	Efficiency	Statistical	Branching
	yield	[%]	Signif. $[\sigma]$	fraction $[(10^{-4})]$
$B^+ \to D^s (\to \phi \pi^-) K^+ \pi^+$	$306.0^{+19.7}_{-19.1}$	13.09 ± 1.00	31.5	$1.63^{+0.11}_{-0.10}~^{+0.18}_{-0.18}\pm0.25$
$B^+ \rightarrow D^s (\rightarrow K^{*0} K^-) K^+ \pi^+$	$281.7\substack{+24.7 \\ -23.6}$	9.48 ± 0.67	26.5	$1.74^{+0.15}_{-0.15}~^{+0.20}_{-0.20}\pm0.27$
$B^+ ightarrow D^s (ightarrow K^0_S K^-) K^+ \pi^+$	$179.4^{+16.7}_{-16.0}$	14.49 ± 1.11	20.4	$1.82^{+0.17}_{-0.16}~^{+0.24}_{-0.25}\pm0.11$
$B^+ \to D^{*-}_s (\to \phi \pi^-) K^+ \pi^+$	$59.0\substack{+9.3 \\ -8.6}$	3.51 ± 0.52	11.0	$1.24^{+0.20}_{-0.18}~^{+0.23}_{-0.23}\pm0.19$
$B^+ \rightarrow D^{*-}_s (\rightarrow K^{*0}K^-)K^+\pi^+$	$61.7\substack{+10.6\\-9.8}$	2.88 ± 0.42	9.3	$1.33^{+0.23}_{-0.21}~^{+0.25}_{-0.25}\pm0.21$
$B^+ \to D^{*-}_s (\to K^0_S K^-) K^+ \pi^+$	$35.7\substack{+7.7 \\ -6.9}$	4.02 ± 0.59	8.0	$1.39^{+0.30}_{-0.27}~^{+0.29}_{-0.28}\pm0.08$

Simultaneous fit $\mathcal{B}(B^+ \to D_s^- K^+ \pi^+) = (1.71^{+0.08}_{-0.07}(\text{stat}) \, {}^{+0.20}_{-0.20}(\text{syst}) \pm 0.15(\mathcal{B}_{int})) \times 10^{-4}$ To three D_s modes: $\mathcal{B}(B^+ \to D_s^{*-} K^+ \pi^+) = (1.31^{+0.13}_{-0.12}(\text{stat}) \, {}^{+0.25}_{-0.25}(\text{syst}) \pm 0.12(\mathcal{B}_{int})) \times 10^{-4}$

> BaBar results: $BF(B^+ \rightarrow D_s^-K^+\pi^+) = 2.02 \pm 0.13 \pm 0.38 \times 10^{-4}$ $BF(B^+ \rightarrow D_s^{*-}K^+\pi^+) = 1.67 \pm 0.16 \pm 0.35 \times 10^{-4}$

B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 100, 171803 (2008)

Preliminary studies of two-body subsystems do not confirm existance of any new resonance !

conclusions

• $B^0 \rightarrow D_s^* h$

Preliminary measurements of

 $\begin{array}{l} \mathsf{BF}(\mathsf{B}^{0}\to\mathsf{D_{s}}^{**}\pi^{\text{-}}) = (1.75\pm0.33~(\text{stat})\pm0.17~(\text{syst})\pm0.10~(\mathrm{B_{int}})~)\times10^{-5} \\ \mathsf{BF}(\mathsf{B}^{0}\to\mathsf{D_{s}}^{*-}\mathsf{K}^{+}) = (2.02\pm0.32~(\text{stat})\pm0.18~(\text{syst})\pm0.14~(\mathrm{B_{int}})~)\times10^{-5} \end{array}$

Improved measurement of the ratio of DCSD/CFD amplitudes $R_{D^*\pi} = 1.63 \pm 0.16$ (stat) ± 0.10 (syst) ± 0.03 (th) %

-> improved capabilities of observing CP violation in the $D^{*\pm}\pi^{\mp}$ system

-> W-exchange processes seem to be negligible in the $R_{D^{\ast}\pi}$

• B $\rightarrow D_s^{(*)} K \pi$

Measurements of

 $\begin{array}{ll} \mathsf{BF}(\mathsf{B}^{+}\to\mathsf{D}_{\mathsf{s}}^{-}\mathsf{K}^{+}\pi^{+}) &= 1.71\pm0.08\;(\text{stat})\pm0.20\;(\text{syst})\pm0.15\;(\mathsf{B}_{\text{int}})\times10^{-4}\\ \mathsf{BF}(\mathsf{B}^{+}\to\mathsf{D}_{\mathsf{s}}^{*-}\mathsf{K}^{+}\pi^{+}) &= 1.31\pm0.13\;(\text{stat})\pm0.25\;(\text{syst})\pm0.12\;(\mathsf{B}_{\text{int}})\times10^{-4} \end{array}$

BACKUP

