Properties of the matter created in heavy ion collisions
results from the PHOBOS experiment at RHIC

Krzysztof Woźniak
INSTITUTE OF NUCLEAR PHYSICS PAN
for the PHOBOS Collaboration

EPS - HEP 2009
16-22 July 2009, Kraków, Poland
Outline

The PHOBOS detector - a brief description
Evidences for creation of a new state of nuclear matter
Particle production in heavy ion collisions - recent results
 • correlations with a high p_T trigger particle
 • two particle correlations - particle production in clusters
Predictions for LHC
Burak Alver, Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton, Russell Betts, Richard Bindel, Wit Busza (Spokesperson), Vasundhara Chetluru, Edmund García, Tomasz Gburek, Joshua Hamblen, Conor Henderson, David Hofman, Richard Hollis, Roman Hołyński, Burt Holzman, Aneta Iordanova, Chia Ming Kuo, Wei Li, Willis Lin, Constantin Loizides, Steven Manly, Alice Mignerey, Gerrit van Nieuwenhuizen, Rachid Nouicer, Andrzej Olszewski, Robert Pak, Corey Reed, Christof Roland, Gunther Roland, Joe Sagerer, Peter Steinberg, George Stephans, Andrei Sukhanov, Marguerite Belt Tonjes, Adam Trzupek, Sergei Vaurynovich, Robin Verdier, Gábor Veres, Peter Walters, Edward Wenger, Frank Wolfs, Barbara Wosiek, Krzysztof Woźniak, Bolek Wysłouch

ARGONNE NATIONAL LABORATORY
INSTITUTE OF NUCLEAR PHYSICS PAN
NATIONAL CENTRAL UNIVERSITY
UNIVERSITY OF MARYLAND

BROOKHAVEN NATIONAL LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
UNIVERSITY OF ILLINOIS AT CHICAGO
UNIVERSITY OF ROCHESTER
Properties of the matter created in heavy ion collisions ...

PHOBOS detector - trigger system & TOF

- Trigger counter
- Time of flight detector (TOF)
- Beam

HEP 2009
Kraków, Poland
Spectrometer:

two arms
16 layers of silicon sensors
2 Tesla magnetic field

\[0 < \eta < 2 \]

\(p_T \) from 30 MeV/c (reconstructed)
PHOBOS detector - multiplicity detector

Multiplicity detector:
- octagon and 6 rings
- single layer of silicon sensors
- no magnetic field

$|\eta| < 5.4$
p_T from 7-35 MeV/c
Production of particles with high transverse momentum is strongly suppressed in central Au+Au collisions. This effect is caused by strong interactions of partons traversing the dense matter created in the A+A collisions.

\[
R_{AA} = \frac{\sigma^{inel}_{pp} \frac{d^2 N_{AA}}{dp_T d \eta}}{N_{coll} \frac{d^2 \sigma_{pp}}{dp_T d \eta}}
\]
Large elliptic flow

Geometrical anisotropy of the interaction area is reflected in the momenta of produced particles.

Elliptic flow is close to results of calculations in hydrodynamical models for a perfect fluid.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{v2_vs_Npart}
\caption{\textbf{Flow}}
\end{figure}
Very low p_T particles production

No anomalous enhancement in production of particles with very low p_T (expected for weakly interacting quark-gluon plasma).

Parameterization fitted at higher p_T and extrapolated to low p_T
Correlations with a high p_T trigger particle

Question: what happens to partons stopped in the dense matter in central Au+Au collisions

Trigger particle:
- measured in spectrometer
- $p_T > 2.5$ GeV/c

Other particles:
- measured in a single layer of octagon, or first layer of vertex detector or spectrometer
- $p_T > 7-35$ MeV/c
Correlations with a high p_T trigger particle

PHOBOS Au+Au 200 GeV

$p_T^{\text{trig}} > 2.5 \text{ GeV/c}$

$p_T^{\text{assoc}} > 7 - 35 \text{ MeV/c (π^\pm)}$

\[
\frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{ch}}}{d\Delta\phi \; d\Delta\eta}
\]

PHOBOS Au+Au central 0-30%
Correlations with a high p_T particle

More quantitative analysis and comparisons

Au+Au (PHOBOS)

\[\frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{ch}}}{d\Delta \phi \, d\Delta \eta} \]

p+p (PYTHIA)

\[\frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{ch}}}{d\Delta \phi \, d\Delta \eta} \]

dependence on $\Delta \eta$

dependence on $\Delta \phi$

PHOBOS Experiment
New state of matter
Recent results
Predictions for LHC
Near-side correlations with a high p_T particle

Near-side correlations, $\Delta \phi \approx 0^\circ$: Au+Au @ 200 GeV, 0-30%

PHOBOS Experiment

New state of matter

Recent results

Predictions for LHC

Near-side, $|\Delta \phi| < 1.0$

- Au+Au 0-30% (PHOBOS)
- p+p (PYTHIA v6.325)
- v_2 uncertainty
- ZYAM uncertainty

Long-range ridge yield

PHOBOS
arXiv: 0903.2311 [nucl-ex]
Near-side correlations with a high p_T particle

Near-side correlations, $\Delta \phi \approx 0^\circ$: Au+Au @ 200 GeV, 0-30%

The same additional yield

PHOBOS

arXiv: 0903.2311 [nucl-ex]
Correlations with a high p_T particle

Dependence on $\Delta \phi$ in selected $\Delta \eta$ ranges

short range: $|\Delta \eta| < 1$

long range: $-4 < \Delta \eta < -2$

Centrality dependence

PHOBOS
arXiv: 0903.2311 [nucl-ex]
Correlations with a high p_T particle

Near-side and away-side $\Delta \phi$: subtraction of p+p yields

-4 < $\Delta \eta$ < -2

$|\Delta \eta| < 1$

PHOBOS

arXiv:0903.281

Recent results

Predictions for LHC
After subtraction of p+p yield ...

The near side ridge extends to at least $|\Delta \eta| \approx 4$
It disappears for peripheral Au+Au collisions at $N_{\text{part}} < 80$

The additional yield in Au+Au collisions (in excess of that in p+p) decreases for peripheral collisions

NEAR side: $\Delta \phi \approx 0^\circ$
 - short-range minus PYTHIA
 - long-range (PYTHIA≈0)

AWAY side: $\Delta \phi \approx 180^\circ$
 - short-range
 - long-range
 - both minus PYTHIA

PHOBOS
arXiv: 0903.2311 [nucl-ex]
Two-particle correlations

Correlations measured as a function of $\Delta \phi$ and $\Delta \eta$ in the very wide pseudorapidity interval $|\eta| < 3$

p+p@200GeV Cu+Cu@200GeV Au+Au@200GeV

PHOBOS
arXiv: 0812.1172 [nucl-ex] (Cu+Cu, Au+Au)
Possible explanation of correlations:
production of intermediate objects (clusters) which decay into particles

Cluster model & two-particle correlations

PHOBOS p+p@200GeV

Cluster model

A cluster of lamps
Cluster parameters can be extracted from the data using correlation function integrated over $\Delta \phi$

k_{eff} - effective cluster size

δ - RMS of the two particle distance in η characterizing cluster width

Parameters are obtained by fitting the function:

$$R(\Delta \eta) = (k_{\text{eff}} - 1) \left(\frac{G(\Delta \eta)}{B(\Delta \eta)} - 1 \right)$$

where:

$$G(\Delta \eta) \approx \exp \left(\frac{-\Delta \eta^2}{4 \delta^2} \right)$$

$$B(\Delta \eta) = \text{background}$$

Note: even if particles from very wide range ($|\eta| < 3$) are used, acceptance corrections are large.
Two-particle correlations & cluster model

Multiplicity of the clusters is large (up to 6 charged particles - more than for known resonances)

Cluster width exceeds that for isotropic decay at rest

Cluster parameters are similar for p+p and central Au+Au collisions, maximal difference is observed for semi-peripheral collisions

Note: acceptance corrections were applied
Centrality expressed by the fractional cross-section allows to compare similar geometry of the collisions.

Cluster parameters scale with fractional cross-section

Note:
acceptance corrections were applied
Extrapolations to LHC energies

In the collider experiments the laboratory frame coincides with the center of mass of the nuclei. In this frame energy dependence of many observables is complicated.

Alternatively, the rest frame of one of the nuclei involved in the collision may be used.

After transformation to the rest frame of one of the nuclei, the “extended longitudinal scaling” of pseudorapidity distributions of charged particles density $dN/d\eta$ and the elliptic flow are observed.
Extrapolations to LHC energies: $dN/d\eta$

PHOBOS data 19.6-200 GeV
PRL 91 (2003) 052303

Extrapolation of PHOBOS data based on extended longitudinal scaling allows to obtain prediction for $dN/d\eta$ at 5.5 TeV

Transformation to the rest frame of one of the nuclei:
$y' = y - y_{beam}$
and, approximately:
$\eta' = \eta - y_{beam}$

Extrapolations to LHC energies: elliptic flow

PHOBOS data 19.6-200 GeV
PRL 91 (2003) 052303

Similar extrapolation of v_2 measured by PHOBOS gives predictions for elliptic flow distribution at 5.5 TeV

Transformation to the rest frame of one of the nuclei:
$y' = y - y_{beam}$
and, approximately:
$\eta' = \eta - y_{beam}$

PHOBOS experiment contributed to the discovery of the new phase of nuclear matter (sQGP) and studied its properties using unique features of the detector: very large angular acceptance and reconstruction of low p_T particles.

Recent analysis of particle production reveals strong long-range correlations with a high p_T trigger particle and emission of particles in large clusters.

Extended longitudinal scaling (limiting fragmentation) allows to give reliable predictions for heavy ion collisions at LHC.
Welcome to Kraków

Krzysztof Woźniak
Properties of the matter created in heavy ion collisions...
Two-particle correlations & cluster model

Importance of acceptance corrections

Uncorrected results for the same events analyzed in different η ranges

\[R(\Delta \eta) \]

$|\eta| < 3$

$K_c = 2.87$

$\delta = 0.84$

$|\eta| < 1$

$K_c = 1.29$

$\delta = 0.45$