The 2009 Europhysics Conference on High Energy Physics Krakow, July 16th - 22nd, 2009

Charmed Mesons in Deep Inelastic Scattering at HERA

Karin Daum - Wuppertal/DESY on behalf of the H1 and ZEUS collaborations

Outline:

- HERA & kinematics at HERA
- Theory of open charm production in ep-scattering
- \cdot Inclusive cross sections of D meson production
- Charm contribution F_2^c to the proton structure function
- Conclusions

The HERA accelerator

 $\int s = 318 \ GeV$

This talk: Results from HERA-II running only

Open Charm Production in DIS

Predominantly: Boson-Gluon-Fusion (BGF)

ep-Kinematics:

x=x_{BJ} (fraction of proton momentum carried by the struck quark)

2 kinematic regimes : $Q^2 \cong 0 \text{ GeV}^2$: Photoproduction (γ p) $Q^2 > 1 \text{ GeV}^2$: Electroproduction (DIS)

Factorisation:

 $\sigma^{h} = PDF \otimes M.E. \otimes FF$

Theory approaches for charm production

Massive fixed order QCD calculation, FFNS

- heavy flavours generated dynamically via BGF
- correct threshold treatment
- valid for $\mu^2 \approx O(m_c^2)$
- expected to fail at some scale $\mu^2 > m_c^2$

Model for charm production in DIS and inclusive charm meson production available : HVQDIS

Massless calculation (ZM-VFNS)

- massless charm as part of the proton
- not valid at threshold
- \bullet expected to work at HERA at large p_t

Generalized mass calculation (GM-VFNS)

- massive at $\mu^{2} {\approx} \text{m}_{\text{c}}^{2}$ and massless at $\mu^{2} {\gg} \text{m}_{\text{c}}^{2}$
 - no predictions for the final state in DIS (F_2^{cc} only)

will be compared

to data

Monte Carlo event generators

RAPGAP

- •collinear partons in the proton
- •massive matrix element calculated in LO QCD
- •higher order contributions via parton showers
- parton evolution based on DGLAP equations

CASCADE

- only gluons in the proton
- un-integrated gluon density (k_T)
- massive off-shell matrix element
- initial state parton showers to all orders based on CCFM equations (P_{aa} only)
- final state parton showers à la Jetset

Hadronization via Lund String model (Jetset)

Reconstruction of D*+ mesons

- - Golden decay mode:

 Kinematic range: 5<Q²<100 GeV² and 100<Q²<1000 GeV² 0.02<y<0.7 P_t(D*)>1.5 GeV |η(D*)|<1.5

Data Sample
 350 pb⁻¹
 (2004–2007)

Reasonably well described by NLO QCD

• different shapes in \textbf{p}_{t} and η for Q² $<\!$ 100 GeV² for both PDF's

- Reasonably well described by NLO QCD albeit different shape
- RAPGAP fails to describe the data in full Q² range
- CASCADE yields a better description

Reconstruction of D⁺ and D⁰ mesons

Reconstructed decay modes:

 $D^+ \rightarrow K^- \pi^+ \pi^+ (+ \text{ c.c.})$ $D^0 \rightarrow K^- \pi^+ (+ \text{ c.c.})$

(D⁰ not from $D^{\star+} \rightarrow D^0 \pi^+$)

• Decay products originate from reconstructed secondary vertex with significance

$$S_{XY}=L_{XY}/\sigma(L_{XY}) > 3 (D^+) > 1 (D^0)$$

DESY 08-201

D^{+} and D^{0} mesons and selection

 Kinematic range: 5<Q²<1000 GeV² 0.02<y<0.7
 1.5<p_T(D)<15 GeV |η(D)|<1.6

Data Sample:
 133.6 pb⁻¹
 (2004/05) e⁻p

EPS 09, Krakow, July, 17th 2009

Inclusive D cross sections - Q^2 and x

Charm contribution to the proton structure function

Charm structure function:

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha_{em}}{Q^4x} \cdot \left(Y_+ F_2^{c\bar{c}} - \frac{y^2}{Y_+} F_L^{c\bar{c}}\right) \quad \text{with} \quad Y_+ = 1 + (1 - y^2)$$

visible inclusive D cross sections are converted to F_2^{cc} via

$$F_2^{c\bar{c}}(\exp) = \frac{\sigma_{vis}(\exp)}{\sigma_{vis}(theory)} F_2^{c\bar{c}}(theory)$$

complication: visible range of detected D mesons covers
only ≈ 30% of the phase space
⇒introduces model dependent extrapolation uncertainties
(more details see next talk by K. Lipka)

F_2^{cc} from D mesons

Massive NLO predictions with PDF's from global analyses or inclusive F_2 agree well with data

Large scaling violations in F2^{cc}
Data sensitive to the gluon density in the proton

Conclusions

- New results on D meson production in DIS at HERA have been presented
- Inclusive visible cross sections are reasonably well described by
 - LO+PS Monte Carlo RAPGAP and CASCADE
 - massive NLO calculation HVQDIS
- Charm contribution F_2^{cc} to the proton structure function has been extracted
 - F₂^{cc} data cover a large part of the (x,Q²) plane accessible by inclusive F₂ measurements
 - F_2^{cc} data will crosscheck the gluon density
 - Scaling violations in F_2^{cc} significantly larger than in F_2

