A Cambridge-Aachen (C-A) based Jet Algorithm for boosted top-jet tagging

CMS PAS JME-09-001

Salvatore Rappoccio

For the CMS Collaboration
Motivation

- New physics scenarios often involve $t\bar{t}b\bar{b}$ resonances
- Large BR in all-hadronic channel (46%)
- Are we sensitive to this?
- Can we suppress the huge dijet background?

hep-ph/0612015v1

SBM-07-001
Motivation

Top-tagging: A Method for Identifying Boosted Hadronic Tops

David E. Kaplan, Keith Rehermann, Matthew D. Schwartz and Brock Tweedie
Department of Physics and Astronomy Johns Hopkins University Baltimore, MD 21218, U.S.A.

A method is introduced for distinguishing top jets – boosted, hadronically decaying top quarks – from standard model backgrounds using jet substructure. The procedure involves parsing the jet cluster to resolve features such as three light quark subjets, and then imposing angular and kinematic constraints. This method is much more efficient than simple invariant mass cuts or jet clustering with fixed angular size. With top-tagging, high p_T dijets can be rejected with an efficiency of around 99% while retaining 20-40% of the tops. This allows us to reach into the all-hadronic channel for new-physics signals, such as new heavy $t\bar{t}$ resonances, which ordinarily would be overwhelmed by the enormous dijet background. In addition, it will improve the reach for cases where one of the tops decays semi-leptonically, and may also have applications to single-top searches and studies of b-tagging efficiency at high p_T.

The Large Hadron Collider (LHC) is a top factory. The millions of $t\bar{t}$ pairs it produces, assuming they can be found, will provide profound insights into the standard model and its possible extensions. Most of the tops will be produced near threshold, and can be identified using the same kinds of techniques applied at the Tevatron – looking for the presence of a bottom quark through b-tagging, identifying the W boson, or finding three jets whose invariant mass is near m_t. However, some of the top quarks produced at the LHC will be boosted. In particular many of the interesting ones, such as those which come from $t\bar{t}$ resonances above 1 TeV, can have $E/m \gtrsim 5$, and these may be more difficult to identify. A boosted top will usually decay to a collimated collection of standard-model hadrons which looks remarkably simi-

Achieved 99% background rejection, 40% top tagging efficiency

http://arxiv.org/abs/0806.0848

Based on discriminating top from non-top based on subjets of high-pt jets

Assume crude delta-phi segmentation (0.1x0.1) in paper
C-A is a sequential recombination type algorithm\(^1\)

- Pairwise examination of input 4-vectors
- Calculate \(d_{ij}\)

\[
d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2
\]

- \(N = 2: k_T\)
- \(N = 0: \) Cambridge Aachen
- \(N = -2: \) anti-\(k_T\)

- Also find the “beam distance”

\[
d_{iB} = k_{T,i}^n
\]

- Find min of all \(d_{ij}\) and \(d_{iB}\)
- If min is a \(d_{ij}\), merge and iterate
- If min is a \(d_{iB}\), classify as a final jet
- Continue until list is exhausted

\(^1\): arXiv:hep-ph/9707323
Top Tagging

- **“Hard jets”:** Cluster jets with C-A
 - $R = 0.8$
 - $p_T > 250$ GeV
 - $|y| < 2.5$

- **Reverse cluster sequence**
 - Throw out soft clusters
 - Fraction of hard jet $p_T < 0.05$

- **Repeat on clusters until either**
 - Have 3 or 4 hard clusters (PASS)
 - There are all soft clusters (FAIL)

- These are called **“subjets”**
Top Tagging

- Discriminate top jets against non-top jets
Top Tagging

- Discriminate **top jets** against **non-top jets**
 - Top mass
 - W mass
 - b-tagging
Top Tagging

- Discriminate top jets against non-top jets
 - Top mass
 - W mass
 - b tagging

Tracking unreliable in boosted top due to collimation of particles
Top Tagging

- Discriminate **top jets** against **non-top jets**
 - Top mass
 - W mass
 - b-tagging
Top Tagging

- Discriminate top jets against non-top jets
 - Top mass ~ jet mass
 - W mass

Jet mass good approximation for top mass
Top Tagging

• **Discriminate top jets against non-top jets**

 - Top mass
 - W mass \sim min di-subjet mass

bq, bq', qq'

Take minimum mass pairing

Parton Level
Top Tagging

- Discriminate **top jets** against **non-top jets**

 - Top mass
 - W mass ~ min di-subjet mass

\[
\begin{align*}
 bq & \quad j_1 + j_2 \\
 bq' & \quad j_1 + j_3 \\
 qq' & \quad j_1 + j_3
\end{align*}
\]
Top Tagging

- Discriminate **top jets** against **non-top jets**
 - Top mass
 - W mass \sim \text{min di-subjet mass}

After reconstruction, still often gets W mass

16Jul09
Top Tagging

- Discriminate **top jets** against **non-top jets**
 - Top mass
 - W mass

Require
- $100 < m_{\text{jet}} < 250$ GeV/c2
- 50 GeV/c$^2 < m_{\text{min}}$
Efficiency Estimate

- Efficiency derived from MC
- Systematic uncertainties will include:
 - Theoretical uncertainties
 - Smearing detector-based resolutions
Efficiency Estimate

Theory
- Heavy quark fragmentation
- Light quark fragmentation
- ISR/FSR
- Λ_{QCD}

Detector
- Select partons from t->Wb decay
 - b, q, q'
- Compare true value to response in subjet
- Parameterize resolutions with parton p_T
- Smear p_T by 10%
- Smear Y, ϕ by 50%

<table>
<thead>
<tr>
<th>Effect</th>
<th>Systematic Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial State Radiation</td>
<td>1</td>
</tr>
<tr>
<td>Final State Radiation</td>
<td>2</td>
</tr>
<tr>
<td>Renormalization Scale</td>
<td>3</td>
</tr>
<tr>
<td>Light Quark Fragmentation</td>
<td>< 1</td>
</tr>
<tr>
<td>Heavy Quark Fragmentation</td>
<td>< 1</td>
</tr>
<tr>
<td>Theoretical Uncertainty</td>
<td>3.8</td>
</tr>
<tr>
<td>Momentum Smearing + 10%</td>
<td>3.3</td>
</tr>
<tr>
<td>Azimuthal Smearing + 50%</td>
<td>2.9</td>
</tr>
<tr>
<td>Rapidity Smearing + 50%</td>
<td>2.9</td>
</tr>
<tr>
<td>Detector-Based Uncertainty</td>
<td>5.3</td>
</tr>
<tr>
<td>Total Systematic Uncertainty</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Efficiency Estimate

46% for $p_T > 600$-700 GeV/c
Mistag Parameterization

• “Anti-tag-and-probe”
 – Look at “anti-tagged” sample collected from dijet triggers
 – Have a signal-depleted sample on the “away” side

Signal depleted

Require veto (anti-tag)
Mistag Parameterization

- Data-based background estimate
 - Parameterize the background rate with jet p_T
 - Numerator: Anti-tag Plus Tag
 - Denominator: Anti-tag Plus Probe
 - For simulation: scale to 100 pb$^{-1}$
 - Remove ttbar
Mistag Parameterization

- Total Systematic: 100% of subtracted $t\bar{t}$bar
- Statistically dominated
- 98% rejection for $p_T = 600$ GeV/c
Application: Dijet Search

- CMS PAS EXO-09-002
- Examine dijet search for resonances decaying to ttbar in hadronic channel
- Simple bump-hunt
- Signal from MC
- Background:
 - QCD dijets (red): data-driven.
 - Ttbar (blue): from MC
Application: Dijet Search

With ~200 pb$^{-1}$ can begin to probe realistic new physics scenarios giving boosted top
Conclusions

• Have presented the C-A based algorithm for tagging highly boosted top jets
 – Validated C-A
 – Validated the Top Tagging algorithm

• Presented data-driven fake-tag estimate
 – ~98% rejection of non-top jets at 600 GeV/c

• Presented MC-driven efficiency estimate until data-driven approach is possible
 – ~46% efficiency of top jets at 600 GeV/c

• Good sensitivity to popular new physics models