E. De Lucía (LNF-INFN) for the KLOE Collaboration

Vus and lepton universality with kaons at KLOE

Kaon Physics

Vector transition: only 2nd order SU(3)

breaking [Ademollo-Gatto]

Helicity suppressed: Sensitivity to NP enhanced

- Precise determination of V_{us}
- Test of Lepton universality Ke3 vs Kμ3
- Most precise test of CKM unitarity

 $\left|\mathbf{V}_{ud}\right|^{2}+\left|\mathbf{V}_{us}\right|^{2}=1$ $\left|\mathbf{V}_{ub}\right|^{2}$ negligible

Lepton-Quark universality of weak int.

 $G_{F}^{2} \equiv G_{CKM}^{2} = (|V_{ud}|^{2} + |V_{us}|^{2})G_{F}^{2}$

- Precise determination of V_{us}/V_{ud}
- Test of Physics beyond the SM
 - right-handed contributions to charged weak currents
 - charged Higgs exchange (2 Higgs doublet scenarios)

• Lepton Flavor Violation test with $\Gamma(K_{e2})/\Gamma(K_{\mu 2})$

Eríka De Lucía -- EPS2009 -- Krakow 16-22 July 2009

Γ(Κ_{μ2})/Γ(π_{μ2})

Kaon physics (11)

Set bounds on New Physics from Lepton-Quark Universality

New Physics extensions of the SM can break gauge universality in the form of tree or loop level contributions to muon decays and/or semileptonic processes.

i. Exotic Muon Decays would contribute to the muon lifetime

 $|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 = 1$ - **BR(exotic muon decays)**

Provides best limit on $\mathbf{BR}(\mu^+ \rightarrow e^+ \overline{\nu}_e \nu_\mu)$ better than direct searchii.Additional Z' Gauge Bosonscontributing at loop level to muons and semileptonicdecays differently (Competitive with direct search)[PRD 35 (1987)]

 iii. SUSY particle loops affecting muon and semileptonic decays differently: constraints on *slepton-squark mass difference* (x2-3 precision needed) [PRL 75 (1995), PRL 88 (2002)]

Present accuracy set bounds on the scale of New Physics Λ_{NP} at 1-2 TeV $|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 = 1 + \epsilon_{NP} \qquad \epsilon_{NP} \approx M_W^2 / \Lambda_{NP}^2$

Ins from KL3 rates

$$\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{5}}{192\pi^{3}} S_{EW} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}(0)|^{2}} \times I_{Kl}(\{\lambda\}_{Kl}) (1 + 2\Delta_{K}^{SU(2)} + 2\Delta_{Kl}^{EM})$$

with $K \in \{K^+, K^0\}$; $l \in \{e, \mu\}$, and: C_{κ^2} 1/2 for K⁺, 1 for K⁰

Inputs from theory:

- S_{EW}
- Universal short distance EW correction (1.0232)

 $f_{\star}^{K^0\pi}(0)$ Hadronic matrix element at zero momentum transfer (t=0)

 $\Delta_{K}^{SU(2)}$ Form factor correction for strong SU(2) breaking

Long distance EM effects

Inputs from experiment:

- $\Gamma(K_{l3(\gamma)})$ Branching ratios with well determined treatment of radiative decays; lifetimes
- Phase space integral: λs $I_{Kl}(\lambda)$ parameterize form factor dependence on t: K_{a3} : only λ_{+} (or $\lambda_{+}' \lambda_{+}''$)

 $K_{\mu3}$: need λ_+ and λ_0

KLOE has measured all relevant inputs for charged and neutral kaons: BR's, lifetimes (K, K), form factors (FFs)

E. De Lucía - KLOE2 Physics Workshop- April 10th 2009

To extract $V_{\mu s}$ from neutral kaons

PLB 632 (2006) BR(K_{e3}) = 0.4008(15) 0.37% BR($K_{\mu3}$) = 0.2699(14) 0.52%	Based on $13 \times 10^6 K_L$ decays tagged by $K_S \rightarrow \pi^+ \pi^-$
PLB 626 (2005) τ _L = 50.92(30) ns 0.58%	Fit the time dependence over $0.4\tau_{L}$ of 8.5×10^{6} $K_{L} \rightarrow \pi^{0}\pi^{0}\pi^{0}$ decays tagged by $K_{s} \rightarrow \pi^{+}\pi^{-}$ (P. de Simone talk)
PLB 636 (2006)	
$BR(K_e \rightarrow \pi e v) = 7.046(91) \times 1$	1.3% From tagged K_s beam 1.2×10 ⁸ events
PLB 636 (2006)	JHEP12(2007)
$\lambda'_{+} \times 10^{3}$ $\lambda''_{+} \times 10^{3}$	$\lambda_{+}' = (25.6 \pm 1.5_{stat} \pm 0.9_{syst}) \times 10^{-3}$
25.5 ± 1.8 1.4 ± 0.8	$\lambda_{+}'' = (1.5 \pm 0.7_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-3}$
Based on 2x10 ⁶ K _L e3 decays	$\lambda_{a} = (15.4 \pm 1.8_{\text{stat}} \pm 1.3_{\text{vst}}) \times 10^{-3}$
tagged by $K_s \rightarrow \pi^+ \pi^-$	V stat yst V
-	based off 1.0X10° N _L µ5 decays tagged
	by $K_s \rightarrow \pi^+ \pi^-$ and from combined fit with $K_L e3$ data

To extract $V_{\mu s}$ from charged kaons

 $|V_{us}|f_+(0)$ at KLOE

$f_{+}(0) \left \mathbf{V}_{us} \right $	•	-	K _L e3	0.2155(7)	err % 0.3	All KLOE exp. inputs but K _s lifetime <i>(M. Dreuccí talk)</i>
	-	•	<i>Κ_L</i> μ3	0.2167(9)	0.4	Lepton universality
	•	-	K _s e3	0.2152(14)	0.7	$r_{\mu e} \equiv \frac{ f_{+}(0) V_{us} ^{2}_{\mu 3, \exp}}{ f_{+}(0) V_{us} ^{2}_{2}} = \frac{g_{\mu}^{2}}{a^{2}}$
	•	-	K±e3	0.2152(13)	0.6	$r_{\mu e} = 1.000(8)$
• · · · ·			<i>K</i> ±µ3	0.2132(15)	0.7	τ decays: $(r_{\mu e})_{\tau} = 1.0005(41)$ (PDG06) π decays: $(r_{\mu e})_{\pi} = 1.0042(33)$
0.213 0.2	15	0.217				
JHEP04(2008)059						
KLOE average $ V_{us} f_{+}(0) = 0.2157(6) \chi^2/ndf=7/4 (13\%)$ World Average 0.2166(5)						
V _{us} = 0.2237(13)		f ₊ (0))=0.964(5) PRL 100 (2008)			
1-	V _{ud} ²	- V _{us}	² = 9(8	S)x10 ⁻⁴	V _{ud}	= 0.97418(26) PRC 77 (2008)
Eríka De Lucía EPS2009 Krakow 16-22 July 2009						

Vus, Vud and Vus /Vud

Lepton Flavor Violation:

$\mathbf{R}_{\mathbf{k}} = \Gamma(\mathbf{ke2}(\mathbf{y}_{\mathbf{B}})) / \Gamma(\mathbf{k}\mu\mathbf{2}(\mathbf{y}_{\mathbf{B}}))$

- ◆ DE (or SD)≈ IB presently known with 15% accuracy

To achieve ~1% accuracy on $R_{\rm K}\,$ improve knowledge of DE

• In the SM R_K calculated at 0.04% (no hadronic uncertainties) $R_{K}^{SM}=2.477(1)$ 10⁻⁵ [Cirigliano, Rossell JHEP10(2007)005]

★ Lepton Flavor Violation in the MSSM would enhance R_K up to 1% LFV appears at 1-loop level via an effective H⁺ℓν_τ Yukawa interaction dominated by ev_τ

$$R_K^{\rm LFV} \approx R_K^{\rm SM} \left[1 + \left(\frac{m_K^4}{M_{H^{\pm}}^4} \right) \left(\frac{m_{\tau}^2}{m_e^2} \right) |\Delta_{13}|^2 \tan^6 \beta \right]$$

[Masiero-Paradisi-Petronzio PRD74 (2006) 011701]

R_k: analysis strategy

- Perform Direct search for K_{e2} and K_{u2} , no tag: gain $\times 4$ of statistics
- Select 1-prong kinks in DC, K track from IP & secondary P > 180 MeV Signal events with E_{γ} <10 MeV (no explicit photon detection)
- Exploit tracking of K and secondary: assuming $m_v = 0$ get M^2_{lep} (S/B~1/10)
- Particle Identification by Neural Network based on EMC information (training with KLe3)

Signal count from fit in NN- M²_{lep}

Free parameters:

normalization factors for Kµ2 and Ke2(γ) including only IB with E_{γ} <10 MeV (to O(α_{em}) and resummation of leading logs) *Fixed parameter:*

 f_{DE} = 10.2% (Ke2 contamination from Ke2(γ) with E_{γ} >10 MeV)

 R_{κ} : fitting for K_{e2} and K_{u2} counting

Ke2 counts from two-dimensional binned likelihood fit in the NN- M²_{lep}
 plane with 0.86 < NN < 1.02 and -3700 < M²_{lep} < 6100

Kezy amplitudes

$$\frac{d\Gamma(K \rightarrow ev\gamma)}{dx \, dy} = \rho_{\rm IB}(x, y) + \rho_{\rm SD}(x, y) + \rho_{\rm INP}(x, y) \qquad \begin{aligned} x &= 2E_{\gamma}^{*} / m_{\kappa} \\ y &= 2E_{e}^{*} / m_{\kappa} \end{aligned}$$

$$\rho_{\rm SD}(x, y) = \frac{G_{F}^{2} |V_{us}|^{2} \alpha}{64\pi^{2}} m_{\kappa}^{5} ((V + A)^{2} f_{\rm SD+}(x, y) + (V - A)^{2} f_{\rm SD-}(x, y))$$

$$V_{\mu}A: \text{ effective vector and axial couplings}$$

Eríka De Lucía -- EP.S2009 -- Krakow 16-22 July 2009

Kezy: signal selection

- 1-prong selection -- NN > 0.98 -- 1 photon cluster with E_{γ} > 20 MeV in time with K
- Cluster times for photon and electron must be compatible

• Further reject Ke3 decays with $\Delta E_{\gamma} = E_{\gamma}^{LAB} - E_{\gamma}^{CAL}$ ($\sigma_{E}^{LAB} \approx 12 \text{ MeV } \sigma_{E}^{CAL} \approx 30 \text{ MeV}$) Signal count from 2-dimensional binned likelihood fit in M^{2}_{lep} , ΔE_{γ} / σ in 5 bins of E_{γ}^{*}

Kezy spectrum vs $O(p^4)$ ChPT

in agreement with ChPT O(p⁴) prediction, **1.447** × **10**⁻⁵ [Bijnens, Ecker, Gasser '93] KLOE MC implements O(p⁴) ChPT for SD – used in analysis of R_K Validated to within **4.6%** - systematic error on R_K from SD = 0.2% Erika De Lucía -- EPS2009 -- Krakow 16-22 July 2009

 R_{κ} : the final result

Using the complete KLOE data set (2.2 fb⁻¹) we obtain: Draft paper under Collaboration's revision

$\rm R_{K}$ = (2.493 \pm	0.025 _{sta}	$_{\rm at}$ \pm 0.019 $_{\rm sys}$	_{st})x10 ⁻⁵	
	1.0%	0.8%		
R_{κ}^{SM} = (2.477 ± 0.001) 10 ⁻⁵				

Systematic errors %	stat	syst
Reconstruction	0.4	0.4
Trigger efficiency	0.4	-
Background sub	-	0.3
Ke2(DE) comp.	0.2	-
Clustering	0.2	
Total	0.6	0.5

 Main contribution to systematic uncertainty from control-sample statistics (0.6%) Sensitivity shown as 95%-CL excluded regions in the tan β - M_H plane, for fixed values of the 1-3 slepton-mass matrix element, $\Delta_{13} = 10^{-3}$, 0.5×10^{-3} , 10^{-4}

RK: World Average

World average: $R_{\kappa} = 2.498(14) \times 10^{-5}$ (0.56%)

Includes NA62 preliminary (40% data set): $R_{\kappa} = 2.500(16) \times 10^{-5}$ (0.64%)

R_{K}^{SM} = (2.477 ± 0.001) 10⁻⁵

Sensitivity shown as 95%-CL excluded regions in the tan β - M_H plane, for fixed values of the 1-3 slepton-mass matrix element, $\Delta_{13} = 10^{-3}$, 0.5×10^{-3} , 10^{-4}

Summary & conclusions

- Precision physics with Kaon decays to test the Standard Model
 - ♦ Today $|V_{us}| f_+(0) @ 0.3\%$ with KLOE (0.2% from World Average Fit)
 - Lepton universality satisfied to better than 0.5%
 - \bullet <u>Unitarity of CKM matrix</u> satisfied to better than 0.1% ($|V_{us}|$ at 0.4%)
 - <u>Universality of lepton and quark weak coupling</u> from unitarity
- and set constraints on New Physics models
 - \clubsuit with Z' and H[±] boson, with Lepton Flavor Violation
 - * R_{κ} at 1.3% from 1.4x10⁴ Ke2 decays with 2.2 fb⁻¹ data sample
 - * $\Gamma(\text{Ke2}\gamma; 10 < \text{E}_{\gamma} < 250 \text{ MeV} and p_e > 200 \text{ MeV})/\Gamma(\text{K}\mu2)$ at 4.6%
 - reduces from 0.5% to 0.2% the systematic uncertainty on R_{κ} from DE which is also very important for NA62 R_{κ} measurement

Erika De Lucía -- EPS2009 -- Krakow 16-22 July 2009

SPARE SLIDES

Today with f₊(0) @ 0.5% the accuracy on the unitarity relation of the first row is

$$\sigma (1 - V_{ud}^2 - V_{us}^2) = 6 \times 10^{-4}$$

 $\begin{cases} V_{us} @ 0.4\% \text{ from fit} \\ V_{ud} @ 0.026\% \end{cases}$

 $f_+(0) \otimes 0.1\%$ accuracy from lattice within few years

	<i>f</i> ₊ (0)V _{us}	V _{us}
KLOE today	0.28%	0.30%
(World Average)	(0.23%)	(0.25%)
KLOE + Step0 (5 fb ⁻¹) + World Average	0.14%	0.17%

• $f_{\rm K} / f_{\pi} @ 0.1\%$ within few years and $|V_{\rm us} / V_{\rm ud}| @ 0.28\%$ from $\Gamma(K_{\mu 2}) / \Gamma(\pi_{\mu 2})$

With |V_{ud} | @ 0.02% and |V_{us} | @0.17% the accuracy on the unitarity relation of the first row would improve by a factor of ~2

 σ (1-V_{ud}²-V_{us}²) = (3÷4) x10⁻⁴

Improve constraints on New Physics and interplay with other sectors