Diffractive PDFs and factorization tests at HERA

Alberto Garfagnini

Università degli studi di Padova, and INFN

July 17, 2009

• • • • • • • • • • • •

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 1 / 20

ъ

Outline

Talk Outline

Diffraction at HERA

QCD and Vertex Factorization

DPDFs from HERA Inclusive Data

DPDFs for/from HERA Dijets

DPDFs and HERA Photoproduction Dijets

Diffractive to Inclusive Dijet Ratios

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

। ≣ । ৰ ≣ । । ≘ । ৩ ৭ ৫ July 17, 2009 2 / 20

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Diffraction at HERA

Diffraction at HERA

Kinematics

- Q^2 4-momentum exchange
- $W \gamma$ p center-of-mass energy
- x fraction of p momentum carried by the struck quark
- x_{IP} fraction of p momentum carried by IP

$$x_{IP} = rac{q \cdot (p-p')}{q \cdot p} \sim rac{Q^2 + M_X^2}{Q^2 + W^2}$$

β fraction of *IP* momentum carried by the struck quark

$$\beta = \frac{Q^2}{2q \cdot (p - p')} \sim \frac{Q^2}{Q^2 + M_X^2}$$
$$x = \beta x_{IP}$$

t 4-momentum transfer at p vertex

$$t = (p - p')^2$$

 $ep \rightarrow eX$

Probe partonic structure of the proton $\rightarrow F_2$

Inclusive DIS

Probe structure of the exchanged color singlet (Pomeron IP) $\rightarrow F_2^D$

Diffractive DIS

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 3 / 20

Diffraction at HERA

Experimental Selection of Diffraction

LPS/FPS

Tag and reconstruct the final state proton:

- clean, no p-diss. background;
- measure |t|;
- access high x_{IP} region;
- low acceptance, low statistics.

LRG

Select events with a Large Rapidity Gap:

- measure all hadrons comprising X;
- some p-diss. background;
- very good acceptance at low x_{IP}.

Diffr. PDFs @ HERA

Diffraction at HERA

Diffractive Structure Functions

Diffractive Cross Section

$$\frac{d\sigma_{\gamma^*p}^D}{dM_X} = \frac{\pi Q^2 W}{\alpha (1 + (1 - y)^2)} \cdot \frac{d^3 \sigma_{ep \to eXp}^D}{dQ^2 dM_X dW}$$

• Diffractive structure function $F_2D(4)$ and reduced cross section $\sigma_r^{D(4)}$

$$\begin{array}{ll} \frac{d^4 \sigma^D_{ep \to eXp}}{d\beta dQ^2 dx_{IP} dt} & = & \frac{4\pi\alpha^2}{\beta Q^2} \left[1 - y + \frac{y^2}{2(1+R^D)} \right] F_2^{D(4)} \left(\beta, Q^2, x_{IP}, t \right) \\ & = & \frac{4\pi\alpha^2}{\beta Q^2} \left[1 - y + \frac{y^2}{2} \right] \sigma_r^{D(4)} \left(\beta, Q^2, x_{IP}, t \right) \end{array}$$

• when t is not measured

$$\sigma_r^{D(3)} = \int \sigma_r^{D(4)} \left(\beta, Q^2, x_{IP}, t\right) dt$$

•
$$R^{D} = \sigma_{L}(\gamma^{*}p \rightarrow Xp) / \sigma_{T}(\gamma^{*}p \rightarrow Xp)$$

• $\sigma_r^D \sim F_2^D$ when $R^D \sim 0$

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 5 / 20

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

QCD and Vertex Factorization

QCD and Vertex Factorization

• QCD factorization theorem (Collins et al.) at fixed *x*_{IP} and *t*:

$$d\sigma \left(\gamma^{*} \boldsymbol{p} \rightarrow \boldsymbol{X} \boldsymbol{p}
ight) = f_{i}^{D} \left(\boldsymbol{x}, \boldsymbol{Q}^{2}, \boldsymbol{x}_{IP}, t
ight) imes d\hat{\sigma}_{\gamma^{*} \boldsymbol{q}} \left(\boldsymbol{x}, \boldsymbol{Q}^{2}
ight)$$

• Proton Vertex factorization (Regge theory):

$$f_{i}^{D}\left(x,Q^{2},x_{IP},t\right)=f_{IP}\left(x_{IP},t\right)\cdot f_{i}^{IP}\left(\beta=x/x_{IP},Q^{2}\right)$$

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 6 / 20

NLO QCD Fits to Inclusive DDIS data

- use DGLAP evolution equations to get quark and gluon distrib, $f_i(z, Q^2)$, with DPDFs parametrized versus z at a staring scale Q_0^2 .
- Heavy quark contributions trated in VFNS of Thorne and Roberts (ZEUS only)
- Starting scale $Q_0^2 = 1.8 \text{ GeV}^2$

quark singlet $q = \sum_q (f_q + f_{\bar{q}})$ (light quarks, no intrinsic charm or bottom). $zq(z, Q_0^2) = A_q \cdot z^{B_q} \cdot (1 - z)^{C_q}$

gluon (2 fits) $zg(z, Q_0^2) = A_g \cdot z^{B_g} \cdot (1-z)^{C_g}$

- "Standard" : Fit S with B_g and C_g fitted
- "Constant" : Fit C with $B_g = C_g = 0$ (as in H1-2006 B)
- use Proton Vertex Factorization assumptions:
 x_{IP} dependence parametrized with Regge inspired Pomeron and Reggeon fluxes (with linear trajectories)
- Free parameters in the fit: 9
- H1 performed similar fits

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 7 / 20

イロト 不得 トイヨト イヨト ヨー ろくの

DPDFs from HERA Inclusive Data

ZEUS QCD Fit to Inclusive Diffraction

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 8 / 20

Q² (GeV²)

25

39

7.1

14

DPDFs from HERA Inclusive Data

- Both Fit S and C describe the data.
- ... but large discrepancy between the fits for $zg \rightarrow$ low sensitivity of inclusive data to gluons.
- Very large uncertainty for gluons at high z

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 9 / 20

From Inclusive Diffraction to Diffractive Dijets

• Boson-Gluon Fusion is the main mechanism \rightarrow sensitive to the gluon content

- extract DPDFs from inclusive diffractive data;
- test of factorization in dijet and heavy quark (charm) diffractive data.

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 10 / 20

H1 Diffractive Dijets (in DIS)

- Good agreement in $x_{IP} \rightarrow$ Pomeron flux similar to that of inclusive diffraction;
- large uncertainties in the NLO QCD predictions (with H1 DPDF Fits).
- discrepancy between Fit A and B evident at high *z*_{IP}.
- high sensitivity of dijet data to the gluon density for $z_{IP} > 0.4$.

$$Z_{IP} = rac{M_{12}^2 + Q^2}{M_X^2 + Q^2}$$

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 11 / 20

ZEUS Diffractive Dijets (in DIS)

 Combining inclusive and dijet diffractive data → gluon and quark densities constrained with comparable precisions across the whole *z* range.

H1 Diffractive Singlet and Gluon distributions

Better constraint of gluons over a wider range $(0.05 < Z_{IP} < 0.9).$

Diffr. PDFs @ HERA

July 17, 2009 13/20

Diffractive Charm Data

- ZEUS DPDF SJ predictions compared to charm diffractive structure function x_{IP} · F₂^{D(3)cc̄}
- Fair agreement with data (still statistically limited)

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 14 / 20

DPDFs and HERA Photoproduction Dijets

Diffractive Dijet Photoproduction

• main mechanism Boson-Gluon Fusion \rightarrow sensitive to gluon content

- use Photoproduction at HERA as a hadron-hadron collider
 - "direct photon" ($x_{\gamma} \rightarrow 1$) less hadron-like;
 - "resolved photon" ($x_{\gamma} < 1$) more hadron-like
- enhance re-scattering with the proton remnant by switching the "photon remnant" ON/OFF.
- ⇒ Expect Resolved to be more suppressed than Direct photon process.

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 15 / 20

Dijet data in Photoproduction (vs x_{γ})

- NLO calculations (Frixione e Ridolfi) with
- H1 2006 Fit B DPDFs (H1);
- H1 Fit 2007 and ZEUS DPDF SJ (ZEUS);
- similar kinematic regions: $E_T^{jet1} > 7.5 \text{ GeV}$ and $E_T^{jet2} > 6.5 \text{ GeV}.$
- small suppression in H1, compatible with ZEUS
- no evidence for x_γ dependence

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 16 / 20

Dijet data in Photoproduction (vs E_T)

- Test the *E_T* dependence of absorption
- small suppression in H1 for the low E_T region
- both data still compatible (within errors)

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 17 / 20

(4) (5) (4) (5)

Diffractive to Inclusive Dijet Ratios

Diffractive to Inclusive dijet ratios

• main idea: measure ratio of diffractive gluon to inclusive gluon

- full or partial cancellation of photon PDFs, scale uncertainties, jet energy scales, ...
- x_{γ} distribution sensitive to absorption/gap survival
- ... but also to differences between diffractive and inclusive phase spaces

Diffr. PDFs @ HERA

July 17, 2009 18 / 20

Diffractive to Inclusive Dijet Ratios

Diffractive to Inclusive Ratios

- $z_{IP} < 0.8$ cut applied to reduce sensitivity to PDF uncertainties;
- Data compared to RAPGAP/Pythia (w/ and w/o MI), so far;
- MI model gives a fair description of data over a large phase space.

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 19 / 20

Conclusions

- A wealth of data has been published on Diffraction by the H1 and ZEUS collaborations, using different techniques (LRG, Leading Proton, *M_X* methods);
- Proton Vertex Factorization works to a good approximation and allows to extract DPDFs from NLO QCD fits to the β and Q^2 dependencies of the inclusive data.
- Diffractive dijet data are able to discriminate between different gluon parametrization.
- Combined fits to inclusive and dijet data constrain both the quark and gluon DPDFs to good and similar precisions.
- Ratio of diffractive to inclusive photoproduction dijets cross sections measured for the first time.
 - trend of the data can be interpreted using multiple interactions

AG (Padova Univ, and INFN)

Diffr. PDFs @ HERA

July 17, 2009 20 / 20