First Alignment of the CMS Tracker and Implications for the First Collision Data

Andrei Gritsan

CMS

Johns Hopkins University CMS Collaboration

July 17, 2009

Europhysics Conference on High Energy Physics Krakow, Poland

Tracker in the CMS Detector

CMS Tracker Alignment Goal

• Alignment goal: nail down (few μ m) all 16,588 modules (× 6 dof)

• Minimize residuals

$$\chi^2(\mathbf{p}_{ ext{modules}}, \mathbf{q}_{ ext{tracks}}) = \sum_{i=1}^{ ext{N}_{ ext{residuals}}} r_i^T \mathbf{V}_i^{-1} r_i$$

Statistical Methods in CMS Tracker Alignment

• Global method ("Millepede II") NIM A 566, 5 (2006) $\operatorname{tracks hits} (u = f \cdot (\mathbf{p}, \mathbf{q} \cdot))^2 = \mathbf{r}^2$

	$\chi^2(\mathbf{p},\mathbf{q}) = \sum_{j}^{\text{oracles}}$	$\sum_{i}^{\text{mos}} \frac{(y_{ji} - f_{ji}(\mathbf{p}, \mathbf{q}_j))}{\sigma_{ji}^2} = \sum_{ji} \frac{1_{ji}}{\sigma_{ji}^2}$ CMS implementation
pros	module correlations included	less CPU with one or few iterations
cons	helix trajectory model used	large matrix may limit N parameters

• Local iterative method CMS-NOTE-2006/018, arXiv:0809.3823

$$\chi^{2}_{\text{module}} = \sum_{i}^{\text{hits}} \mathbf{r}_{i}^{T}(\mathbf{p_{m}}) \mathbf{V}_{i}^{-1} \mathbf{r}_{i}(\mathbf{p_{m}}) + \sum_{j}^{\text{survey}} \mathbf{r}_{*j}^{T}(\mathbf{p_{m}}) \mathbf{V}_{*j}^{-1} \mathbf{r}_{*j}(\mathbf{p_{m}})$$
$$\Delta \mathbf{p_{m}} = \left[\sum_{i} \mathbf{J}_{i}^{T} \mathbf{V}_{i}^{-1} \mathbf{J}_{i}\right]^{-1} \left[\sum_{i} \mathbf{J}_{i}^{T} \mathbf{V}_{i}^{-1} \mathbf{r}_{i}\right] \quad ; \qquad \mathbf{J}_{i} = \partial \mathbf{r}_{i} / \partial \mathbf{p_{m}}$$

pros	full Kalman Filter track model	simple implementation, all dof
cons	ignore correlations in one iteration	large CPU with many iterations

Tracker Alignment without Magnetic Field

• Partial tracker: summer 2007

• $\sim 50/80 \mu m$ in TOB/TIB

• Full tracker: summer 2008

• \sim 30-40 μ m in TOB/TIB

Distribution of mean of residuals for TIB

Distribution of mean of residuals for TOB

CMS Tracker Alignment with Magnetic Field

- Best data for alignment of CMS Tracker: fall 2008 ("CRAFT")
 ~ 4M cosmic tracks for Tracker alignment
 B-field = 3.8T ⇒ account for multiple scattering track-by-track
- Require good quality tracks and hits: p > 4 GeV/cclean hits, outlier hit rejection, χ^2 cut, min hits, 2D hits only $\sim 4\%$ in Pixels

Alignment Strategy

- Multi-step approach by both algorithms to address CMS geometry:
 - large structure movement: coherent v alignment of 1D modules
 - alignment of two sides of 2D strip modules (units): u, w, γ

 \Rightarrow solve locally to match track model in all degrees-of-freedom (dof)

Example: Pixel Residuals (local, global, combined)

Median of the Residuals

Pixel Barrel

Strip Barrel

Cosmic Track Halves: Collision-like Tracks

- Tracker resolution with data (require Pixel hits, near collision point)
 - compare non-aligned data \rightarrow aligned with data \rightarrow "ideal" MC
 - significant effect of alignment
 - approaching ideal in momentum precision with this track sample

Cosmic Track Halves: Four Other Parameters

- These four parameters $(d_{xy}, d_z, \phi, \theta)$ dominated by Pixels
 - measuring vertex and track direction, note: all p_T -dependent

Monte Carlo Studies: Misalignments

- Comprehensive hierarchical model of CMS Tracker misalignment:
 - "hardware" only "SurveyLAS"
 - "Startup-2008" before collisions "SurveyLASCosmics" (based on 2008 info)
 - "10/pb"
 - "100/pb" (roughly data expected in 2009-2010 LHC run)
 - "ideal" best possible alignment
- Track efficiency stable with proper APE (Alignment Parameter Errors)
 - but fake rate goes up with misalignment

2.5

n

Monte Carlo Studies: Misalignments

• Compare resolution in track parameters

- New "Startup-2009" would be closer to "100/pb" already
 - benefit from cosmic commissioning run and analysis presented today
 note: systematic effects not considered here

Monte Carlo Studies: **b**-tagging

• Many New Physics models: $t \rightarrow b$ displaced vertex ($c\tau_b \approx 450 \ \mu$ m)

Monte Carlo: Example of a Discovery Reach

• Reconstruct narrow $X \to ZZ \to 4\mu, 4e$, or $2e2\mu$

joint likelihood fit analysis as an example test 5/fb at Higgs production rate

"non-aligned" \rightarrow "Startup-2009" \rightarrow "ideal " \Rightarrow makes big difference

- $-m_{ZZ}$ width $4.4 \rightarrow 3.5 \rightarrow 2.6$ GeV (in 4μ , but in 4e little effect)
- significance 4.1 \rightarrow 4.5 \rightarrow 4.8 σ

from $\sqrt{2\ln(\mathcal{L}_{s+b}/\mathcal{L}_b)}$

Systematic Misalignments

• Systematic distortions of the Tracker

- may be χ^2 invariant
- may introduce physics bias
 - e.g. charge bias with layer rotation

- ← layer rotation recovered in alignment
- ← twist and some others harder with cosmics alone

Summary

- CMS Tracker alignment:
 - challenging task (16588 elements)
 - successful CMS run with cosmics
 - complementary statistical methods best combination of global & local
 - achieved local deviations as low as $3\mu m$
- Implication for first physics
 - discovery reach sensitive to tracker alignment
 e.g. fake rate, b-tag, resonance resolution
 - performance is already ahead of expectation
 - systematic limitations with cosmics alone more to come from collisions

