

Selected electroweak results using T leptons at BABAR

Elisa Guido

University & INFN Genova (on behalf of BABAR Collaboration)

Outline

✓ Some recent results from BABAR on:

BABAR data samples

 \checkmark PEP-II asymmetric energy e⁺e⁻-collider operating at the Y resonances

Lepton Universality Test 1. Theory

- In the SM couplings between gauge bosons and leptons are independent of \checkmark lepton flavour
- SM expectation for $R_{ll'} = BR(\Upsilon(1S) \rightarrow l^+l^-)/BR(\Upsilon(1S) \rightarrow l'^+l'^-)$ is 1 \checkmark (except for small lepton-mass effects, $R_{\tau\mu} \sim 0.992$)
- NMSSM: deviations of $R_{II'}$ from SM expectation are possible in the hypothesis \checkmark of existence of a light pseudo-scalar Higgs boson A⁰

$$\checkmark$$
 A⁰ may mediate the decay chain of the Y(1S

 \checkmark

 $\Upsilon(1S) \rightarrow A^0 \gamma, A^0 \rightarrow l^+l^-$ (1)

 $\Upsilon(1S) \rightarrow \eta_b \gamma, \eta_b \rightarrow A^0 \rightarrow l^+ l^-$ (2)

n_b intermediate state or bb continuum Int.J.Mod.Phys.A19, 2183 (2004);

- Phys.Lett B653, 67 (2007) If the photon is undetected, the lepton pair would be ascribed to the $\Upsilon(1S)$
- It can result in a deviation of $R_{II'}$ from SM expectation (lepton universality) \checkmark breaking) $\rightarrow NP$ effect
- Effect more evident when one of the leptons is a τ (up to 10%) $\rightarrow R_{\tau\mu}$ \checkmark E.Guido, Univ.&INFN Genova

- ✓ 28 fb⁻¹ of data collected at Y(3S) CM energy → ~ 122 · 10⁶ Y(3S)
- \checkmark Tag Y(1S) exploiting Y(3S) \rightarrow Y(1S) $\pi^+\pi^-$, Y(1S) $\rightarrow \tau^+\tau^-$ and $\mu^+\mu^-$ events:
 - ✓ BF($\Upsilon(3S) \rightarrow \Upsilon(1S)\pi^+\pi^-$) ~ 5%
 - \checkmark select τ 1-prong decays
 - ✓ 4-charged tracks final state topology
- ✓ Separate selections for $\Upsilon(1S) \rightarrow \tau^+ \tau^-$ (D_{τ}) and $\mu^+ \mu^-$ events (D_{μ})

 \checkmark A multivariate analysis approach in $\tau^+\tau^-$ channel

Signal extraction efficiencies (estimated on MC simulations):

$$\epsilon_{\mu\mu} \sim 45\%$$

 $\epsilon_{\tau\tau} \sim 17\%$

3. Signal extraction

- Extended and unbinned maximum-likelihood fit:
 - ✓ in D_µ a 2-dim likelihood based on ∆M and $M_{\mu+\mu-}$
 - \checkmark in D_{τ} a 1-dim likelihood based on $M_{\pi+\pi-}{}^{\text{reco}}$

 $\Delta \mathsf{M} = M(\varUpsilon(3S)) - M(\varUpsilon(1S))$

 $M_{\mu+\mu-}$ invariant $\mu^+\mu^-$ mass

 $\mathsf{M}_{\mathrm{ff+ff-}}^{\mathrm{reco}} = \sqrt{s + M_{\pi^+\pi^-}^2 - 2 \cdot s \cdot \sqrt{M_{\pi^+\pi^-}^2 + p_{\pi^+\pi^-CM}^2}}$

- ✓ Fit performed simultaneously to the 2 datasets
 - ✓ signal PDFs fixed
 - ✓ bkg PDFs floating

dashed line: bkg

solid line: signal+bkg

E.Guido, Univ.&INFN Genova

- \checkmark Correction for known differences between data and simulation efficiencies
- \checkmark Systematic uncertainty contributions (up to 2.4%):
 - ✓ event selection efficiency;
 - \checkmark particle identification (for μ leptons);
 - ✓ trigger efficiency;
 - ✓ imperfect knowledge of signal and bkg shapes.
- **BABAR preliminary**:

R_{τμ}(Y(1S)) : 1.009 ± 0.010 (stat.) ± 0.024 (syst.)

[Previous best result: $R_{\tau\mu}(\Upsilon(1S))$: 1.02 ± 0.02 (stat.) ± 0.05 (syst.) by CLEO]

Phys.Rev.Lett.98, 052002 (2007)

 \checkmark Sensitive improvement in precision

No significant deviations w.r.t. SM expectations

Measurement of $BF(\tau \rightarrow \overline{K}^0 \pi \nu_{\tau})$ 1. Motivations

- ✓ Hadronic τ decays: access to vector (V) and axial-vector (A) spectral functions → insight into QCD dynamics at intermediate scales and test of SM
- \checkmark Hadrons from τ decays are produced via a W emission
- \checkmark Strangeness changing τ decays are suppressed relative to Cabibbo-allowed modes
- ✓ Resonant decay dominates ($K^* \rightarrow K\pi$ for V current, $K_1 \rightarrow K\rho$ (or $K^*\pi \rightarrow K\pi\pi$) for A current)

- ✓ Event selection reduces non- τ bkg, Bhabha and µ-pair events with a converted photon, and $\tau^- \rightarrow \pi^- \pi^+ \pi^- v_{\tau}$ events (rejected at 90% thanks to a cut on K_s⁰ flight length significance)
- ✓ Main sources of bkg: $\tau^- \rightarrow K_L^0 K_S^0 \pi^- v_\tau$ and $\tau^- \rightarrow \pi^0 K_S^0 \pi^- v_\tau$ (additional neutrals undetected)
- ✓ After the selection: signal purity ~80% and efficiency ~1.1%
- ✓ Efficiency corrections needed (due to particle identification and K_s⁰ reconstruction efficiency)
- ✓ Systematics uncertainty up to 2.72% (main contributions: particle ID and tracking)

✓ Measurement of the branching fraction (combining e-and μ -tag): $BR(\tau^- \rightarrow \overline{K^0}\pi^- \nu_{\tau}) = (0.840 \pm 0.004(\text{stat.}) \pm 0.023 \text{ (syst.)})$ BABAR the world

Analysis of the $K_S^0 \pi^-$ mass spectrum on-going

 \checkmark

 \checkmark

Precision measurement of τ mass and $\tau^+-\tau^-$ mass difference

1. Motivations & method

- CPT invariance fundamental symmetry of SM \checkmark
- Measurement of differences in mass (or lifetime) between particles and their \checkmark anti-particles is the most common CPT test
- In **BABAR** with τ leptons \checkmark
- $M_{T} = (1776.84 \pm 0.17) \text{ MeV/c}^2$ Current best values: \checkmark [PDG '08] $\frac{M(\tau^{+}) - M(\tau^{-})}{4} < 2.8 + 10^{-4}$ M Average Pseudomass endpoint measurement (ARGUS | Phys.Lett. B292, 221 (1992) \checkmark and BELLE Phys.Rev.Lett. 99, 011801 (2007) For hadronic τ decays: $\tau^{\pm} \rightarrow h^{\pm} v_{\tau}$ (h is the total hadronic system) $M_p = M_T(\vartheta^*=0)$ \checkmark $M_{\tau} = \sqrt{M_h^2 + 2(\sqrt{s}/2 - E_h^*)(E_h^* - P_h^* \cos \theta^*)},$ Sharp kinematic cutoff at $M_p = M_T$ \checkmark Smearing due to ISR/FSR and \checkmark $M_p \equiv \sqrt{M_h^2 + 2(\sqrt{s}/2 - E_h^*)(E_h^* - P_h^*)} \le M_\tau$ detector resolution E.Guido, Univ.&INFN Genova EPS-HEP2009, Krakow 09/07/16-22

2. Event selection & signal extraction

- \checkmark 423 fb⁻¹ of data collected at the Y(4S) energy
- \checkmark Events well separated in the space:
- ✓ Select T[±]→π[±]π⁺π⁻ν_T [BR~(8.99±0.06)%; high signal purity; large statistics in endpoint region]
- ✓ Leptonic tag

- ✓ Charged and neutral kaons and protons vetoed
- ✓ 3 tracks not identified as a lepton on the signal side
- Less than 5 photons and total neutral energy < 300 MeV
- Signal efficiency ~2.0% in the signal region
- \checkmark Purity ~96% in the signal region
 - To determine the endpoint from M_p distribution this empirical fit function is used:

$$F(x) = (p_3 + p_4 x) \tan^{-1} \left(\underbrace{p_1 - x}{p_2} \right) + p_5 + p_6 x$$
 (BELLE)

 τ_{tag}

C_{signal}

 \checkmark

 \checkmark Relation between M_p endpoint and M_T determined with Monte Carlo simulations

- Linear relationship with a slope of unity and y-intercept=0 is expected
- \checkmark ISR/FSR and imperfect detector resolution \rightarrow non-zero offset, used to determine M_{τ} from the endpoint fit to data
- ✓ Several cautions to take into account the possible bad reconstruction of tracks momenta

Detector Parameter	p_1 Shift (MeV)		
SVT Material $+20.0$ %	+0.30		
Sol Field $+0.02$ %	+0.10		
B1/Q1 Field $+20.0$ %	+0.20		
Correction	+0.60		
Systematic	0.39		

 Bias in momentum scale reconstruction is the greatest systematic uncertainty contribution

Table 4: Total systematics

Systematic	Uncertainty
MC Statistics	0.05
Parameterization	0.03
Fit Range	0.05
Beam Energy	0.09
Boost	0.00
Resolution	0.00
MC Modeling	0.05
ν_{τ} Mass	0.00
ϕ Dependence	0.00
Tracking Bias	0.39
Total	0.41

3. Result

- Data split in 2 samples (based on the \checkmark total 3π charge)
- Both average and separate measurements \checkmark of $M(T^+)$ and $M(T^-)$

$$M_{\tau} = (1776.68 \pm 0.12(\text{stat.}) \pm 0.41(\text{syst.})) \text{ MeV/c}^2$$
$$\frac{M(\tau^+) - M(\tau^-)}{M_{Average}} = (-3.5 \pm 1.3) \cdot 10^{-4}$$

Comparison with previous measurements for average τ mass and $\tau^+-\tau^-$ mass \checkmark difference

Conclusions

- ✓ BABAR data are a rich harvest for electroweak physics results:
 - several important (and different) tests on SM are possible exploiting the data collected
- ✓ Now finalizing most of the analyses using the full dataset at Y(4S) energy
- ✓ Y(3S) and Y(2S) datasets will yield important results, in many fields but also for electroweak physics
- ✓ Preliminary results on:
 - ✓ Lepton Universality in Y(1S) decays
 - ✓ BR($\tau^- \rightarrow \overline{K}^0 \pi^- \nu_\tau$) measurement
 - \checkmark T mass and T⁺-T⁻ mass difference
- ✓ Final results awaited for soon. Stay tuned!

BACKUP SLIDES

The BABAR detector

Lepton Universality

✓ Likelihood written as:

$$\mathcal{L}_{ext} = rac{e^{-N'}(N')^N}{N!} \prod_{i=1}^N \mathcal{P}_i$$

where \mathcal{P}_i is:

$$\begin{aligned} \mathcal{P}_{i} &\equiv N_{\mu} \mathcal{P}_{i}^{\mu\mu} (\Delta M, M_{\mu^{+}\mu^{-}}) + N_{bkg\mu} \mathcal{P}_{i}^{bkg\mu} (\Delta M, M_{\mu^{+}\mu^{-}}) + \\ &+ \frac{\epsilon_{\tau\tau}^{D_{\tau}}}{\epsilon_{\mu\mu}^{D_{\mu}}} N_{\mu} R_{\tau\mu} \mathcal{P}_{i}^{\tau\tau} (M_{\pi^{+}\pi^{-}}^{reco}) + N_{bkg\tau} \mathcal{P}_{i}^{bkg\tau} (M_{\pi^{+}\pi^{-}}^{reco}) \end{aligned}$$

✓ Asymmetric Gaussian with non-Gaussian tails functional form:

$$\mathcal{F}(x) = exp\Big\{-\frac{(x-\mu)^2}{2\sigma^2(L,R) + \alpha(L,R)(x-\mu)^2}\Big\}$$

✓ Summary of systematic uncertainties:

	$\mu^+\mu^-$	$ au^+ au^-$	
event selection	1.5%		
PID	0.6%	_	
Trigger	0.18%	0.10%	
BGF	negl.	negl.	
P.d.f.'s parameters		1.7%	
Bkg $p.d.f.$	0.28%		
Agreement $\mu^+\mu^- vs. \tau^+\tau^-$ in $MassPiPiReco$		0.10%	
MC statistics	0.08%	0.09%	
TOTAL	2.4%		
Corrections:			
PID			
Trigger		1.020	

Measurement of $BF(\tau \rightarrow K^0 \pi^- \nu_{\tau})$

- \checkmark Summary of event selection:
 - \checkmark Ks⁰ reco from 2 oppositely charged tracks with a mass within 25MeV of the PDG value
 - ✓ K_{s^0} transverse flight length significance $L_{xy}/\sigma_{xy} > 5$ (to reduce (@90% level) the # of $\tau^- \rightarrow \pi^- \pi^+ \pi^- v_{\tau}$ events)
 - $\sqrt{\pi^+-\pi^-}$ nearest point < 0.2 cm (to increase the likelihood they come from a K_s⁰)
 - \checkmark $|\cos\theta_{hel}| < 0.97$ (to reduce the # of converted γ)
 - ✓ Event neutral energy < 0.5 GeV and signal side neutral energy < 0.25 GeV (to reduce the # of $\tau^- \rightarrow K_s^0 \pi^0 \pi^- \nu_{\tau}$ and $\tau^- \rightarrow K_s^0 K_L^0 \pi^- \nu_{\tau}$ events)
- ✓ Summary of systematic uncertainties:

Systematic	e-tag	μ -tag	Combined
Tracking	0.58%	0.58%	0.58%
K_S^0 Efficiency	1.40%	1.40%	1.40%
PID	1.45%	1.68%	1.50%
$\mathcal{L} imes \sigma_{ au au}$	0.83%	0.83%	0.83%
Statistical efficiency error	0.51%	0.56%	0.38%
MC background statistics	0.28%	0.30%	0.20%
au backgrounds	1.37%	1.37%	1.37%
Modelling efficiency	0.37%	0.37%	0.37%
Total	2.73%	2.87%	2.72%

Table 2: Summar	y of the systematic	uncertainties as	they feed into	the measurement o	of $\mathcal{B}(au^-$	$\to K^0 \pi^- u_ au$
-----------------	---------------------	------------------	----------------	-------------------	------------------------	------------------------

 $\checkmark BR(\tau \rightarrow K^0 \pi^- \nu_{\tau}) = 1/2 N_{\tau\tau} \cdot (N_{data} - N_{bkg})/\epsilon_{sig}$

 $N_{TT} = \sigma_T \cdot b_{data} = (353.4 \pm 2.3) \cdot 10^6$

 $[N_{\tau\tau} \# \text{ of } \tau + \tau - \text{ pairs in real data};$ $N_{data} \# \text{ of selected ev. in real data};$ $N_{bkg} \# \text{ of bkg ev. estimated on MC};$ $\epsilon_{sig} \text{ signal efficiency}]$

Preliminary BABAR 08 (K⁰_s mode) Belle 07 ---(K⁰_s mode) OPAL 00 (K[®] mode) ALEPH 99 (K⁰₁ mode) ALEPH 98 (K⁰_s mode) CLEO 96 (K⁰_s mode) L3 95 (K⁰ mode) PDG 2006 0.6 0.8 1 1.2 1.4 $\mathbf{B}(\tau \cdot \rightarrow \mathbf{\overline{K}}^{0} \pi \cdot \nu_{\tau}) [\%]$

Precision measurement of τ mass and $\tau^+-\tau^-$ mass difference

✓ Summary of tracking bias:

Detector Parameter	p_1 Shift (MeV)		
SVT Material $+20.0$ %	+0.30		
Sol Field $+0.02$ %	+0.10		
B1/Q1 Field $+20.0$ %	+0.20		
Correction	+0.60		
Systematic	0.39		

- Energy loss in material (SVT) underestimation:
 - ✓ K_s⁰ control sample (non-zero flight length, useful to probe uncertainty in the detector material looking at the reconstructed K_s⁰ mass at different decay lengths)
 - ✓ Several possibilities studied: best option is increasing the amount of SVT material of 20%
- ✓ Solenoidal field: very accurately measured (0.02%)
- \checkmark Final beam-bending magnets show a variation in the permeability of 20%
- ✓ Shifts due to the increased tracking volume material, solenoidal field and final bending magnets in quadrature to determine the systematic due to the tracking bias
- \checkmark Almost all the syst. cancel out when measuring the mass difference
 - \checkmark π^+ and π^- different interaction with the detector material
 - ✓ effect evaluated comparing the reconstructed mass of some well measured hadronic resonances (D⁺→K⁻π⁺π⁻, D⁺→ ϕ π⁺, D_s⁺→ ϕ π⁺)