Fleavy Hadron spectroscopy in a Salpeter model with AdS/QCD inspired potential

Floriana Giannuzzi Universită degli Studi di Bari, Italy & INFN, Sezione di Bari

EPS - HEP 2009 16-22 July 2009, Krakow

mercoledì 15 luglio 2009

AdS/QCD correspondence: new approach to non-perturbative QCD compute $Q\overline{Q}$ potential:

O.Andreev and V.I.Zakharov, PRD 74, 025023 (2006)

Previous determinations: interpolation (Cornell potential) lattice techniques NRQCD

....

We introduce it in a potential model with relativistic kinematics (Salpeter equation) to compute hadron spectra

mercoledì 15 luglio 2009

<u>Plan:</u>

- \checkmark description of the model
- \checkmark fit of parameters from meson spectrum and predictions
- \checkmark meson decay widths
- ✓ doubly heavy baryon masses

Ingredients:

1. Salpeter equation

$$\begin{pmatrix}
\sqrt{m_1^2 - \nabla^2} + \sqrt{m_2^2 - \nabla^2 + V(r)} \\
\text{hadron wave function}
\end{pmatrix} \psi(\mathbf{r}) = M \psi(\mathbf{r}) \\
\text{hadron mass}$$
2. $Q\bar{Q}$ Potential

$$V(r) = V^{color}(r) + V^{spin}(r) + V_0 \\
\int (1 - v^4 e^{\lambda(1 - v^2)})^{-1/2} \\
\int (1 - v^4$$

Meson spectrum

M.V.Carlucci, F.G., G.Nardulli, M.Pellicoro, S.Stramaglia Eur. Phys. J.C 57, 569 (2008)

fit of the parameters and predictions:

Flavor	Level		J = 0			J = 1		
		Particle	Th. mass	Exp. mass	Particle	Th. mass	Exp. mass	
сą	1 <i>S</i>	D	1.862	1.867	D^*	2.027	2.008	
	2 <i>S</i>		3.393			2.598	2.622	
	3 <i>S</i>		2.837			2.987		
сīs	1 <i>S</i>	Ds	1.973	1.968	D_s^*	2.111	2.112	
	25		2.524		5	2.670		
	3 <i>S</i>		2.958			3.064		
сē	1 <i>S</i>	η_{c}	2.990	2.980	J/ψ	3.125	3.097	
	2 <i>S</i>		3.591	3.637		3.655	3.686	
	3 <i>S</i>		3.994			4.047	4.039	
bą	1 <i>S</i>	В	5.198	5.279	B*	5.288	5.325	
	25		5.757			5.819		
	3 <i>S</i>		6.176			6.220		
sb	1 <i>S</i>	Bs	5.301	5.366	B*	5.364	5.412	
	25		5.856		5	5.896		
	3 <i>S</i>		6.266			6.296		
bīc	1 <i>S</i>	B _c	6.310	6.286	B_c^*	6.338		
	2 <i>S</i>		6.869		C	6.879		
	3 <i>S</i>		7.221			7.228		
bb	1 <i>S</i>	η_{b}	9.387		Ϋ́	9.405	9.460	
	2 <i>S</i>	~	10.036			10.040	10.023	
	3 <i>S</i>		10.369			10.371	10.355	
	4 <i>S</i>		10.619			10.620	10.579	

in good agreement with the subsequent measurement by BaBar!

 $M_{\eta_b} = 9388.9^{+3.1}_{-2.3} \pm 2.7 \text{ MeV}$

PRL 101, 071801 (2008)

 $\psi, \Upsilon(nS) \to \ell^+ \ell^-$

 $\mathcal{L}_{eff}^{\ell\ell} = -c_2(\bar{q}\,\gamma^\mu q)(\ell\gamma_\mu\bar{\ell})$ $c_2 = \frac{Q \, 4\pi \, \alpha_{em}}{M^2}$

$$\Gamma_{\ell^+\ell^-} = \frac{4\pi Q^2 \alpha_{em}^2 f_V^2}{3M}$$

Decay constants:

 $\langle 0|A^{\mu}_{ij}|P(k)\rangle = ik^{\mu}Q_{ij}f_P$

meson flavor matrix

 $f_P = \sqrt{3} \frac{1}{2\pi M} \int_0^{+\infty} dk \ k \ \tilde{u}_0(k) N^{\frac{1}{2}} \left[1 - \frac{k^2}{(E_i + m_i)(E_j + m_j)} \right]$ $f_V = \sqrt{3} \frac{1}{2\pi M} \int_0^{+\infty} dk \ k \ \tilde{u}_0(k) N^{\frac{1}{2}} \left[1 + \frac{k^2}{3(E_i + m_i)(E_j + m_j)} \right]$

vector

$$N = \frac{(E_i + m_i)(E_j + m_j)}{E_j E_i}$$

Particle	$\Gamma_{\gamma\gamma}({ m KeV})$	[1]	[2]	[3]	[4]
η_{c}	4.252	7.46	7.18	$7.14 {\pm} 0.95$	5.5
η_c'	3.306	4.1	1.71	4.44±0.48	1.8
$\eta_c^{\prime\prime}$	1.992		1.21		
η_{b}	0.313	0.560	0.230	0.384±0.047	0.350
η_b'	0.151	0.269	0.070	0.191 ± 0.025	0.150
$\eta_b^{\prime\prime}$	0.092	0.208	0.040		0.100

Some experimental data:

$$\eta_c: \ \Gamma = 27.4 \pm 2.9 \ {
m MeV} \ \Gamma_{\gamma\gamma}/\Gamma = (1.8 + 0.6 - 0.5) \, 10^{-4}$$

Partial width (evaluation by from various determinations) = $7.2 \pm 0.7 \pm 2.0$ KeV (not included in summary tables of pdg)

Particle	$\Gamma_{\ell^+\ell^-}(KeV)$	Exp.	
J/ψ	4.080	$5.55 \pm 0.14 \pm 0.02$	
ψ'	2.375	2.38 ± 0.04	
$\psi^{\prime\prime}$	0.836	0.86±0.07	
Υ	1.237	1.340 ± 0.018	
$\Upsilon(2S)$	0.581	0.612 ± 0.011	
Υ(3 <i>S</i>)	0.270	0.443± 0.008	
$\Upsilon(4S)$	0.212	0.272 ± 0.029	

[1] J.P.Lansberg and T.N.Pham, PRD 75, 017501 (2007)

[2] O.Lakhina and E.S.Swanson, PRD 74, 014012 (2006)

[3] C.S.Kim et al., Phys. Lett. B 606, 323 (2005)

[4] D.Ebert et al., Mod. Phys. Lett. A 18, 601 (2003)

→ D-wave component?

Doubly Heavy Baryons: 2-body problem: quark + diquark ($3 \times \overline{3}$) F.G., PRD 79, 094002 (2009)

experimental observation: $\Xi_{cc}^+ \to \Lambda_c K^- \pi^+$ (Selex Collaboration) $\Xi_{cc}^+ \to pD^+K^-$

PRL 89, 112001 (2002) PL B 628, 18 (2005)

 $M_{\Xi_{cc}} = 3518.9 \pm 0.9 \text{ MeV}$

Particle	State	JР	q-d content	Mass (GeV)	[1]	[2]	[3]	[4]	[5]	[6]	[9]
Ξ _{bb}	1 <i>S</i>	$\frac{1}{2}^{+}$	$q\{bb\}_{1S}$	10.185	10.189	10.340	10.197	10.202	10.09	9.78	10.127
	2 <i>S</i>			10.751	10.586						
	3 <i>S</i>			11.170							
\equiv_{bb}^*	1 <i>S</i>	$\frac{3}{2}$ +	$q\{bb\}_{1S}$	10.216	10.218	10.367	10.236	10.237	10.13	10.35	10.151
	2 <i>S</i>	_		10.770	10.501						
	3 <i>S</i>			11.184							
Ω _{bb}	1 <i>S</i>	$\frac{1}{2}^{+}$	s{bb} _{1S}	10.271	10.293	10.454	10.260	10.359	10.18	9.85	10.225
	2 <i>S</i>			10.830	10.604						
	3 <i>S</i>			11.240							
Ω_{bb}^{*}	1 <i>S</i>	$\frac{3}{2}^{+}$	s{bb} ₁₅	10.289	10.321	10.486	10.297	10.389	10.20	10.28	10.246
	2 <i>S</i>	-		10.839	10.622						
	3 <i>S</i>			11.247							

A.Valcarce et al., Eur. Phys. J. A 37, 217 (2008)
 W.Roberts et al., Int. J. Mod. Phys. A 23, 2817 (2008)
 C.Albertus et al., Eur. Phys. J. A 32, 183 (2007)
 D.Ebert et al., Phys. Rev. D 66, 014008 (2002)
 V.V.Kiselev et al., Phys. Usp. 45, 455 (2002)

- [6] J.R.Zhang et al., Phys. Rev. D 78, 094007 (2008)
- [7] N.Mathur et al., Phys. Rev. D 66, 014502 (2002)
- [8] J.M.Flynn et al., JHEP 0307, 066 (2003)
- [9] R.Lewis et al., Phys. Rev. D 79, 014502 (2009)

Additional energetic level: baryon = quark + 2S diquark

For doubly heavy baryons it is lower than 2S-baryons

Baryon	JР	Quark-diquark content	Mass (GeV)	[2]	[4]	[5]
Ξ _{cc}	$\frac{1}{2}^{+}$	q{cc} ₂₅	3.893	4.029	3.910	3.812
Ξ* _{cc}	$\frac{3}{2}^{+}$	q{cc} ₂₅	4.021	4.042	4.027	3.944
Ω _{cc}	$\frac{1}{2}^{+}$	s{cc} ₂₅	3.992	4.180	4.075	
Ω_{cc}^{*}	$\frac{3}{2}^{+}$	s{cc} ₂₅	4.105	4.188	4.174	
Ξ _{bb}	$\frac{1}{2}^{+}$	$q\{bb\}_{2S}$	10.453	10.576	10.441	10.373
≡ * bb	$\frac{3}{2}^{+}$	q{bb} ₂₅	10.478	10.578	10.482	10.413
Ω_{bb}	$\frac{1}{2}^{+}$	s{bb} ₂₅	10.538	10.693	10.610	
Ω_{bb}^{*}	$\frac{3}{2}$ +	s{bb} ₂₅	10.556	10.721	10.645	

Comparison with HQET

Doubly heavy baryons $\longrightarrow 1/m_{\{QQ\}}$ expansion: (analogous to the $1/m_Q$ expansion for heavy baryons)

$$M_{\{QQ\}q} = m_{\{QQ\}} + \Lambda + \frac{\lambda_1}{2m_{\{QQ\}}} + A_Q d_H \frac{\lambda_2}{2m_{\{QQ\}}}$$

$$d_H = \mathbf{S}_{\{QQ\}} \cdot \mathbf{S}_q$$

Inferred relations:

$$\Xi_{QQ}^{*} - \Xi_{QQ} = A_Q \frac{3\lambda_2}{4m_{\{QQ\}}}$$

$$\int_{P^{*}=3/2^{+}} \int_{J^{P}=1/2^{+}} J^{P} = 1/2^{+}$$

Mass splitting hierarchy:

 $(\Xi_{cc}^* - \Xi_{cc}) > (\Omega_{cc}^* - \Omega_{cc}) > (\Xi_{bb}^* - \Xi_{bb}) > (\Omega_{bb}^* - \Omega_{bb})$

AdS/QCD correspondence: new tool for exploring the non-perturbative regime of QCD

Example: compute the quark-antiquark static potential Application in a potential model with results:

reproduce meson spectra + predictions for some meson masses and decay constants predictions for doubly heavy baryon masses

Prospects:

strong decay widths of baryons $1/\alpha$ corrections to the AdS/QCD potential

THANK YOU

Tetraquark

Consider tetraquark=diquark+antidiquark

	State	Mass	Mass	Mass
Diquark	$\{qs\}$	0.980	[qs]	0.979
	$\{ss\}$	1.096		
$3 \times 3 = 3 + 6$	$\{cq\}$	2.168	[cq]	2.120
	$\{cs\}$	2.276	[cs]	2.235
* attractive	{cc}	3.414		
<pre>{ } spin 1</pre>	bq	5.526	[bq]	5.513
$\begin{bmatrix} 1 \\ spin \end{bmatrix}$	$\{bs\}$	5.630	[bs]	5.619
	$\{bc\}$	6.741	[bc]	6.735
Tetraquark	$\{bb\}$	10.018		

 $3 \times \bar{3} = 1 + 8$

the same as for mesons!

🔶 us

use the same potential

 $\psi_{ij}(r) = \frac{u_0(r)}{r\sqrt{4\pi}}$

diquark not point-like \longrightarrow convolution with diquark wave function

$$\tilde{V}(R) = \frac{1}{N} \int d\mathbf{r_1} \int d\mathbf{r_2} \ |\psi(\mathbf{r_1})|^2 |\psi(\mathbf{r_2})|^2 V(|\mathbf{R} + \mathbf{r_1} - \mathbf{r_2}|)$$

$$N = \int d\mathbf{r_1} \int d\mathbf{r_2} \, |\psi_{12}(\mathbf{r_1})|^2 |\psi_{34}(\mathbf{r_2})|^2$$

$(cq)(c\bar{q})$ spectrum (GeV)

JPC	Flavor content	Mass	$Mass^{(1)}$	Mass ⁽²⁾	Exp. (?) State	Exp. (?) Mass ⁽³⁾
0++	[cq][ēā]	3.857	3.812	3.723		
1^{++}	$([cq]\{\bar{c}\bar{q}\}+[\bar{c}\bar{q}]\{cq\})/\sqrt{2}$	3.899	3.871	3.872 [†]	X(3872)	3.8712 ± 0.0004
1^{+-}	$([cq]{\bar{c}\bar{q}} - [\bar{c}\bar{q}]{cq})/\sqrt{2}$	3.899	3.871	3.754		
0++	$\{cq\}\{\bar{c}\bar{q}\}$	3.729	3.852	3.832		
1^{+-}	$\{cq\}\{\bar{c}\bar{q}\}$	3.833	3.890	3.882		
2++	${cq}{\bar{c}\bar{q}}$	3.988	3.968	3.952	Y(3940)	$3.943 \pm 0.011 \pm 0.013$

First radial excitation of 1⁺⁻: 4.421 GeV and 4.418 GeV (indentified with Z⁺(4430) in arXiv:0708.3997, Maiani, Polosa and Riquer)

(1) D. Ebert, R.N. Faustov and V.O.Galkin, Phys. Lett. B 634, 214 (2006) [arXiv:hep-ph/0512230].

- (2) L.Maiani, F.Piccinini, A.D.Polosa and V.Riquer, Phys. Rev. D 71, 014028 (2005) [arXiv:hep-ph/0412098].
- (3) S.K.Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001 (2003) [arXiv:hep-ex/0309032].
 V.M.Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 93, 072001 (2004) [arXiv:hep-ex/0312021].
 D.Acosta et al. [CDF II Collaboration], Phys. Rev. Lett. 93, 072001 (2004) [arXiv:hep-ex/0312021].
 B.Aubert et al. [BABAR Collaboration], Phys. Rev. D 71, 071103 (2005) [arXiv:hep-ex/0406022].
 K.Abe et al., arXiv:hep-ex/0505037. K.Abe et al., arXiv:hep-ex/0505038.
- † means that the experimental value is used as an input in this case

$(\mathbf{bq})(\mathbf{bq})$ spectrum (GeV)

PC	Flavor content	Mass	$Mass^{(1)}$
0++	$[bq][ar{b}ar{q}]$	10.260	10.471
$1^{+\pm}$	$([bq]{ar bar q}\pm [ar bar q]{bq})/\sqrt{2}$	10.284	10.492
0++	$\set{bq}{ar{b}ar{q}}$	10.264	10.473
1+-	$\left\{ bq \right\} \left\{ ar b ar q ight\}$	10.275	10.484
2++	$\{bq\}\{ar{b}ar{q}\}$	10.296	10.534

 $(cq)(\bar{qs})$ spectrum (GeV)

the second of the second second second				
JР	Flavor content	Mass	Mass ⁽²⁾	
0+	[cq][ās]	2.840	2.371	$D_s(2371)?$
0+	${cq}{\bar{q}\bar{s}}$	2.503	2.424	
1+	${cq}[\bar{q}\bar{s}]$	2.880	2.410	
1+	${cq}{\bar{q}\bar{s}}$	2.748	2.462	$D_s(2457)?$
1+	$[cq]{\bar{q}\bar{s}}$	2.841	2.571	S.L.
2+	${cq}{\bar{q}\bar{s}}$	2.983	2.648	X(2632)?

ko!