

Sensitivity to anomalous quartic gauge couplings in $\gamma\gamma$ interactions at LHC

Krzysztof Piotrzkowski

Universite Catholique de Louvain, CP3 Center On behalf of the Louvain Photon Group

- Introduction: LHC as a $\gamma\gamma$ collider
- Detection of two-photon exclusive pair production
- Sensitivity to aQGCs: γγWW and γγZZ case
- Summary/Outlook

Europhysics Conference on High Energy Physics Kraków, 16-22 July, 2009

low γ virtuality (typical $Q^2 \sim 0.01 \, GeV^2$) \Rightarrow

- factorization to
 - → long distance photon exchange
 - → short distance $\gamma\gamma \rightarrow X$ interaction

aQGCs in photon-photon interactions at LHC - K. Piotrzkowski

LHC as a yy collider

16/07/09 aQGCs in photon-photon interactions at LHC - K. Piotrzkowski

we use Lagrangian for genuine anomalous quartic vector boson couplings which conserves C, P as well as local U(1)_{em} and SU(2)_c

Lagrangian for aQGCs

$$L_{6}^{0} = \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \Theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$L_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \Theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

This gives a general auxiliary formula for a cross section (total or differential, with or without cuts) as a function of the anomalous parameters:

$$\sigma = \sigma_{SM} + \sigma_0 a_0 + \sigma_{00} a_0^2 + \sigma_C a_C + \sigma_{CC} a_C^2 + \sigma_{0C} a_0 a_C$$

Detector acceptance

Simple event counting in the main detector with a two leptons (e or μ) signature within the acceptance cuts :

if
$$N_{obs} = \sigma_{cuts}^{SM} \cdot L$$
, $CL = 95\%$

$$\sum_{k=0}^{N_{obs}} P_{Poisson}(\lambda^{up} = \boldsymbol{\sigma}^{up} \cdot L; k) = 1 - CL$$

The calculated cross section CL=95% upper limits are :

	σ ^{up} [fb]	$\gamma\gamma \rightarrow W W \sigma_{cuts}^{SM} = 4.081 \text{ fb}$	$\gamma\gamma \rightarrow ZZ$ Nobs = 0, λ^{up} = 2.996	
	$L = 1 \text{ fb}^{-1}$	9.2	3.0	
	$L=10~fb^{-1}$	5.3	0.3	
•				

The calculated cross section CL=95% upper limits are :

σ ^{up} [fb]	$\gamma\gamma \rightarrow W W \sigma_{cuts}^{SM} = 4.081 \text{ fb}$	$\gamma\gamma \rightarrow ZZ$ Nobs = 0, λ^{up} = 2.996
$L = 1 fb^{-1}$	9.2	3.0
$L=10~fb^{-1}$	5.3	0.3

can be easily converted to the limit on the anomalous quartic couplings

E

The calculated cross section CL=95% upper limits are :

σ ^{up} [fb]	$\gamma\gamma \rightarrow W W \sigma_{ocuts}^{SM} = 4.081 \text{ fb}$	$\gamma\gamma \rightarrow ZZ$ Nobs = 0, λ^{up} = 2.996
$L = 1 fb^{-1}$	9.2	3.0
$L=10~fb^{-1}$	5.3	0.3

can be easily converted to the limit on the anomalous quartic couplings

16/07/09

aQGCs in photon-photon interactions at LHC - K. Piotrzkowski

Unitarity bounds

aQGCs in photon-photon interactions at LHC - K. Piotrzkowski

Unitarity bounds

A PERSONAL PROPERTY CONTRACTOR

dipole form-factor

Limits including form-factor :

 $a_0^{W}/\Lambda^2 < 2.5 \cdot 10^{-6} \text{ GeV}^{-2}$ $a_Z^{W}/\Lambda^2 < 9 \cdot 10^{-6} \text{ GeV}^{-2}$

whilst LEP :

 $a_0^{W}/\Lambda^2 < 2.0 \cdot 10^2 \text{ GeV}^2$ $a_z^{W}/\Lambda^2 < 3.7 \cdot 10^2 \text{ GeV}^2$

${}_{\texttt{P}}$ use of leptons $\textbf{p}_{_{T}}$ and/or $|\eta|$ distributions - discriminating power

Event pileup

In preceding discussion no event pileup was assumed so full exclusivity condition could be applied: Apart from two leptons, no activity in central detectors (including calorimeters)

Very powerful condition, leaves no non-exclusive backgrounds (beautifully applied at Tevatron: see 5 papers by CDF) BUT cannot be used if two events occur in the same bunch crossing \rightarrow large loss of luminosity by requesting single event BX...

Solution 1:

Use track-based exclusivity, allow only two leptons and NO more tracks from the vertex (Note: only charged particlers and ± 2.5 rapidity units vs ± 5 for calorimeters) Works well for medium luminosities, up to 2.10^{33} cm⁻²s⁻¹

Solution 1+2:

Apply track exclusivity and require detection in the forward detectors + z-vertex matching from time difference measurements in ToF detectors (GasToF)

See FP420 talk for details

• LHC is a powerful photon-photon collider (1% pp luminosity available for $\gamma\gamma$ collisions at energies above 200 GeV)

- Exclusive two-photon WW and ZZ production provides stringent tests if SM
- Exclusive dilepton events from leptonic W and Z decays will allow to improve LEP quartic gauge couplings limits by orders of magnitudes already with small integrated LHC luminosity
- To be able to study the exclusive production at nominal LHC luminosity novel, very forward proton detectors are mandatory!
- Wide set of other models will be studied (SU(2) gauge symmetric, Higgsless scenarios, etc.)

Stay Tuned!

16/07/09

Previous Story / Volume 23 archive

Phys. Rev. Lett. 102, 242001 (issue of 19 June 2009) Title and Authors

Focus

24 June 2009

A Higgs Boson without the Mess

Particle physicists at CERN's Large Hadron Collider (LHC) hope to discover the Higgs boson amid the froth of particles born from proton-proton collisions. Results in the 19 June *Physical Review Letters* show that there may be a way to cut through some of that froth. An experiment at Fermilab's proton-antiproton collider in Illinois has identified a rare process that produces matter from the intense field of the strong nuclear force but leaves the proton and antiproton intact. There's a chance the same basic interaction could give LHC physicists a cleaner look at the Higgs.

A proton is always surrounded by a swarm of ghostly virtual photons and gluons associated with the fields of the electromagnetic and strong nuclear forces. Researchers have predicted that when two protons (or a proton and an antiproton) fly past one another at close range, within

CERN

Higgs machine. If CERN's Large Hadron Collider (LHC) can create Higgs bosons, a handful may appear in rare "exclusive" reactions that don't destroy the colliding protons--similar to a reaction now observed at Fermilab. CERN's ATLAS and CMS teams are considering adding equipment to their detectors (CMS shown here) to look for such events (click image to enlarge)

Backup slides

Accidental overlays

Additional background arises from **accidental coincidence** where the detected system X in the central detector and the forward protons in VFD do not come from the same vertex :

Successfully used at HERA: Robust and simple design, + easy access to detectors

Motorization and movement control to be cloned from LHC collimator design

16/07/09

aQGCs in photon-photon interactions at LHC - K. Piotrzkowski

16/07/09 aQGCs in photon-photon interactions at LHC - K. Piotrzkowski

Problem: <u>Same</u> signature (one or two very forward protons) has also *central diffraction* (i.e. *pomeron-pomeron* scattering) in strong interactions

Both processes weakly interfere, and transverse momentum of the scattered protons are in average much softer in two-photon case

 p_T gives powerful separation handle provided that size of $\gamma\gamma$ and pomeron-pomeron crosssections are not too different Assuming ultimate p_T resolution ≈ 100 MeV; i.e. neglecting detector effects