Europhysics Conference on High Energy Physics, 16-22 July 2009, Krakow, Poland

Dynamical electroweak symmetry breaking by quasiconformal technicolor models

Dennis D. Dietrich

Center for Particle Physics Phenomenology, U. of Southern Denmark, Odense

work in collaboration with

- Matti Järvinen
- Chris Kouvaris
- Francesco Sannino
- Kimmo Tuominen

Contents

- Motivation
- Technicolor

Weinberg; Susskind

- Quasiconformal / walking technicolor
 Eichten & Lane; Holdom
- Viable models vs. precision data

Conclusion & Outlook

Motivation

Why the Higgs?

- gauge invariance
- renormalisability

• unitarity

Motivation Why not the Higgs?

- as yet undiscovered and first and only scalar
- on all other occasions: composite scalars

- ad hoc negative mass term
- quadratic divergencies

Technicolor

$\mathcal{G} = SU(N)_{\mathrm{TC}} \times SU(3)_{\mathrm{QCD}} \times SU(2)_{\mathrm{L}} \times U(1)_{\mathrm{Y}}$

$$\underbrace{f_{\pi}}_{O(10^2 \,\mathrm{MeV})} \mapsto \underbrace{\Lambda_{\mathrm{ew}}}_{O(10^2 \,\mathrm{GeV})}$$

Technicolor

Shopping list

- quasiconformal dynamics (walking)
- oblique parameters \Rightarrow small matter content

- high masses for extra Nambu-Goldstone modes
- stability of the vacuum allignment

Quasiconformal dynamics

β-function

Technicolor

Repertoire

- gauge group (number of colors)
- number of flavors
- representation

 \rightarrow phase diagram

- partially gauged technicolor
- gauge groups other than SU(N)

Phase diagram

D³ & Sannino, Phys.Rev.D75(2007)085018

S parameter

D³ & Sannino, Phys.Rev.D75(2007)085018

Candidates

D³ & Sannino, Phys.Rev.D75(2007)085018

Minimal walking technicolor

Witten anomaly SU(2) adjoint

gauge anomaly cancellation \Rightarrow hypercharge assignment

D³, Sannino & Tuominen, Phys.Rev.D72:055001,2005

Minimal walking technicolor standard model like

D³, Sannino & Tuominen, Phys.Rev.D73:037701,2006

ALEPH, DELPHI, L3, OPAL, SLD Collaborations and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group, Phys.Rept.427:257,2006

Minimal walking technicolor

Nambu-Goldstone modes

 $SU(2)_L \times SU(2)_R \to SU(2)_V \qquad \text{NMWT}$ $\{U\bar{D}, D\bar{U}, (U\bar{U} - D\bar{D})/\sqrt{2}\} \mapsto \{\pi^+, \pi^-, \pi^0\} \mapsto \{W_L^+, W_L^-, Z_L^0\}$ $SU(4) \to SO(4) \qquad \text{MWT}$

additionally UU, DD, UD $\bar{U}\bar{U}, \bar{D}\bar{D}, \bar{U}\bar{D}$ \rightarrow Dark matter

adjoint representation $UG, DG, \overline{U}G, \overline{D}G$

Minimal walking technicolor S = 0 $\lambda = 20 \text{ TeV}$ S = 0.16 $\lambda = 6$ $\lambda = 6$ $\lambda = 0$

 $\hat{m}^2_{\Pi_{DD}}$ $\hat{m}^2_{\Pi_{\underline{U}\underline{D}}}$ $\hat{m}_{\Pi_{\underline{U}\underline{U}}}^2$ 0.4^{2} 0.3^{2} 0.530 1 6 +6 2.87 1.472.871.47masses outside $\infty 4$ excluded range 2 0.1² vacuum allignment 0.1^{2} 0.2^{2} stable! 0.0 $M = M M_A (TeV)$ 0.0 2.0 2.5 0.5 1.0 1.5 $M_A(\text{TeV})$ no extra pions D³ & Järvinen, Phys.Rev.D79:057903,2009

Conclusion

Shopping list

- quasiconformal dynamics (walking) \checkmark
- oblique parameters \Rightarrow small matter content \checkmark
- high masses for Nambu-Goldstone modes
- stability of the vacuum allignment

Dynamical electroweak symmetry breaking by quasiconformal technicolor models is feasible.

Outlook

- Dark matter candidates
- Models beyond MWT & NMWT
- AdS/CFT methods

D³ & Kouvaris, PRD78(2008)055005, PRD79(2009)075004 D³, Järvinen & Kouvaris, work in progress

• Potential signals at LHC

Belyaev, Foadi, Frandsen, Järvinen, Sannino, Pukhov, PRD79(2009)035006

Next-to-minimal walking TC

FIG. 9: Dilepton invariant mass distribution $M_{\ell\ell}$ for $pp \to R_{1,2}^0 \to \ell^+ \ell^-$ signal and background processes. We consider $\tilde{g} = 2,5$ respectively and masses $M_A = 0.5$ Tev (purple), $M_A = 1$ Tev (red), $M_A = 1.5$ Tev (green) and $M_A = 2$ Tev (blue).

Belyaev, Foadi, Frandsen, Jarvinen, Sannino, Pukhov, PRD79(2009)035006

Next-to-minimal walking TC

FIG. 10: M_{ℓ}^T mass distribution for $pp \to R_{1,2}^{\pm} \to \ell^{\pm} \nu$ signal and background processes. We consider $\tilde{g} = 2, 5$ respectively and masses $M_A = 0.5$ Tev (purple), $M_A = 1$ Tev (red), $M_A = 1.5$ Tev (green) and $M_A = 2$ Tev (blue).

Next-to-minimal walking TC

FIG. 11: $M_{3\ell}^T$ mass distribution for $pp \to R_{1,2}^{\pm} \to ZW^{\pm} \to 3\ell\nu$ signal and background processes. We consider $\tilde{g} = 2, 5$ respectively and masses $M_A = 0.5$ Tev (purple), $M_A = 1$ Tev (red), $M_A = 1.5$ Tev (green) and $M_A = 2$ Tev (blue).

Belyaev, Foadi, Frandsen, Jarvinen, Sannino, Pukhov, PRD79(2009)035006