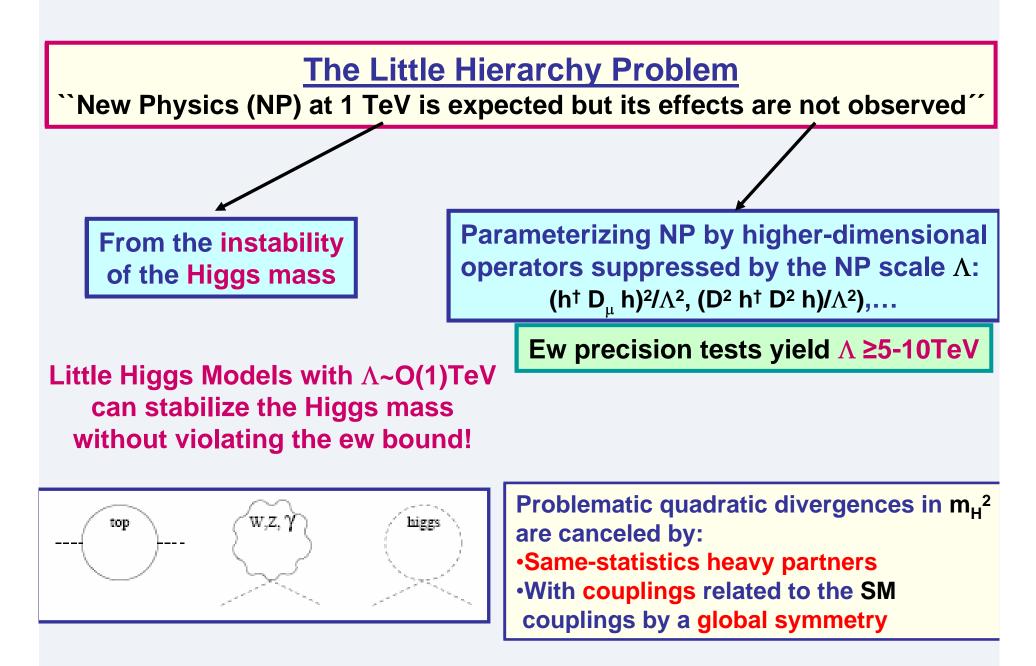


Flavour Physics in the Littlest Higgs Model with T-Parity (LHT)

1. Some Notions about Little Higgs Models

2. Status of Flavour Physics Analysis in LHT


Cecilia Tarantino University of Roma Tre

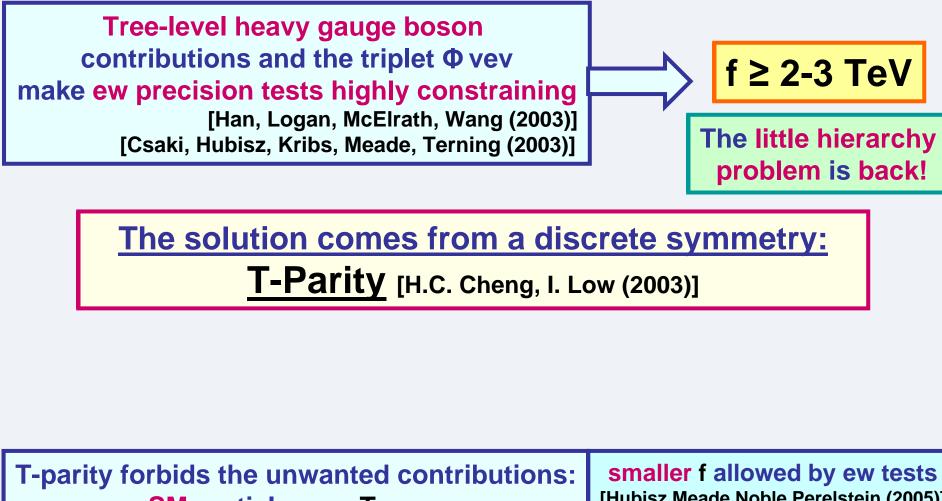
In collaboration with:

M. Blanke, A.J. Buras, B. Duling, S. Recksiegel

0906.5454 [hep-ph]

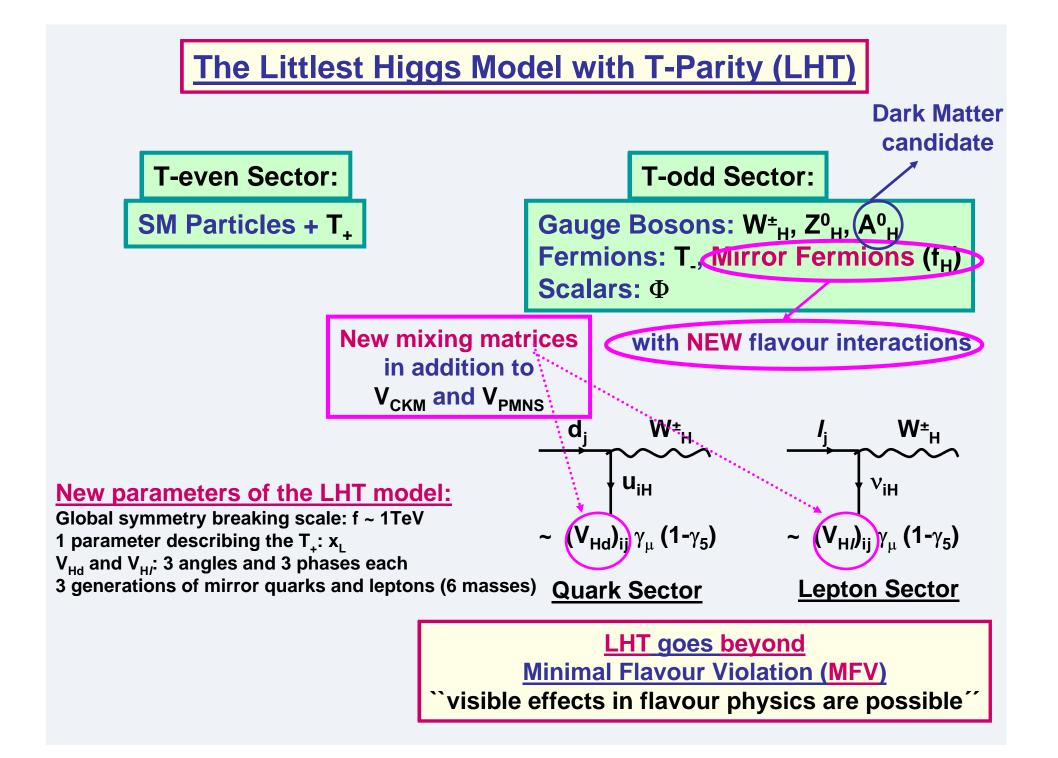
A brief theoretical introduction...

More formally, in Little Higgs Models: [N. Arkani-Hamed, A.G. Cohen, H. Georgi (2001)]


- 1. The Higgs is light as it is the Goldstone boson of a spontaneously broken global symmetry (G)
- 2. Gauge and Yukawa couplings of the Higgs are introduced by gauging a subgroup of G
- 3. ``Dangerous'' quadratic corrections are avoided at one-loop through Collective Symmetry Breaking (the Higgs becomes massive only when two couplings are non-vanishing)

The most economical in matter content: Littlest Higgs (LH) [N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson (2002)]

Global Spontaneous SB: SU(5) → SO(5) f ≈ O(1TeV) **New Heavy Particles** (with O(f) masses)


Gauge Bosons: W_{H}^{\pm} , Z_{H}^{0} , A_{H}^{0} Fermions: T Scalars: Φ (triplet)

Electroweak (ew) precision tests

•SM particles are T-even, new particles are T-odd (similarly to R-parity in SUSY) [Hubisz,Meade,Noble,Perelstein (2005)]

f ≥ 500 GeV

FCNC Processes in LHT: a 2009 Look 0906.5454 [hep-ph]

M. Blanke, A.J. Buras, B. Duling, S. Recksiegel, C.T.

The main news w.r.t to our previous analyses:

•We had previously overlooked an O(v²/f²) contribution to the Z⁰-penguin diagrams, identified by Goto et al. (0809.4753) and Aguila et al. (0811.2891)

•Introducing this contribution the logarithmic UV-cutoff dependence disappears at O(v^2/f^2) from our results \rightarrow the LHT model is less sensitive to the physics at the UV-cutoff scale than how one could expect

•We have extended our analysis to include the interesting decay $K_L \rightarrow \mu^+ \mu^-$

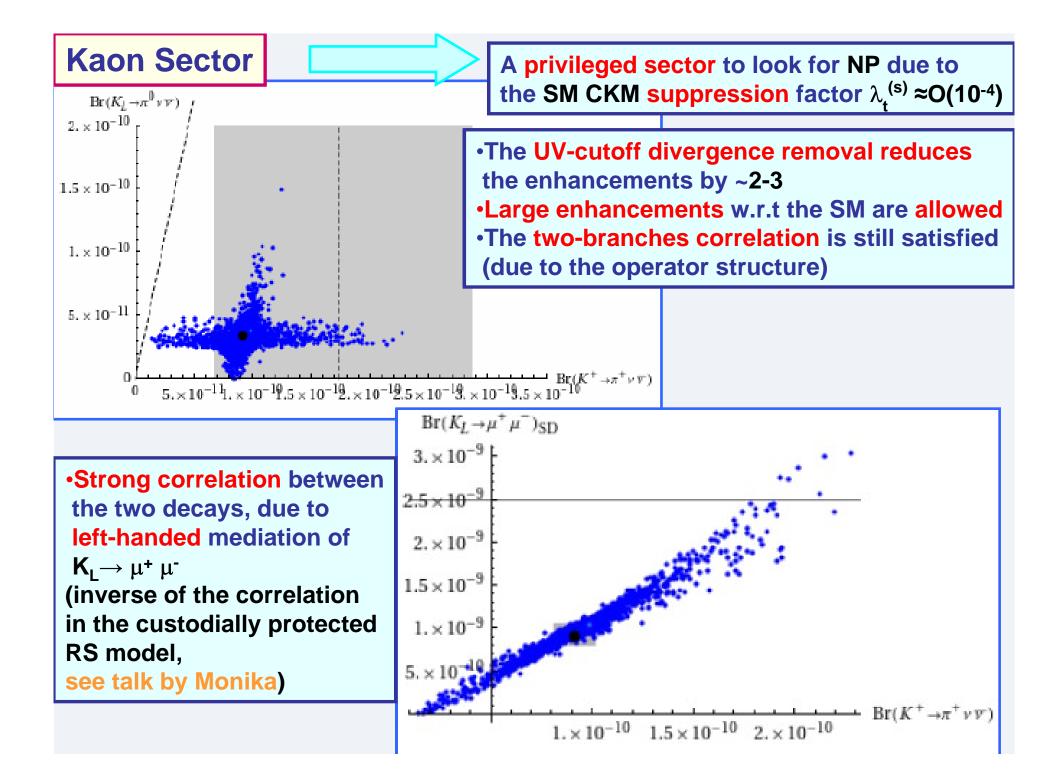
•We have studied the degree of fine tuning necessary in LHT to satisfy the constraints from ϵ_{κ} and $\mu \rightarrow e \gamma$

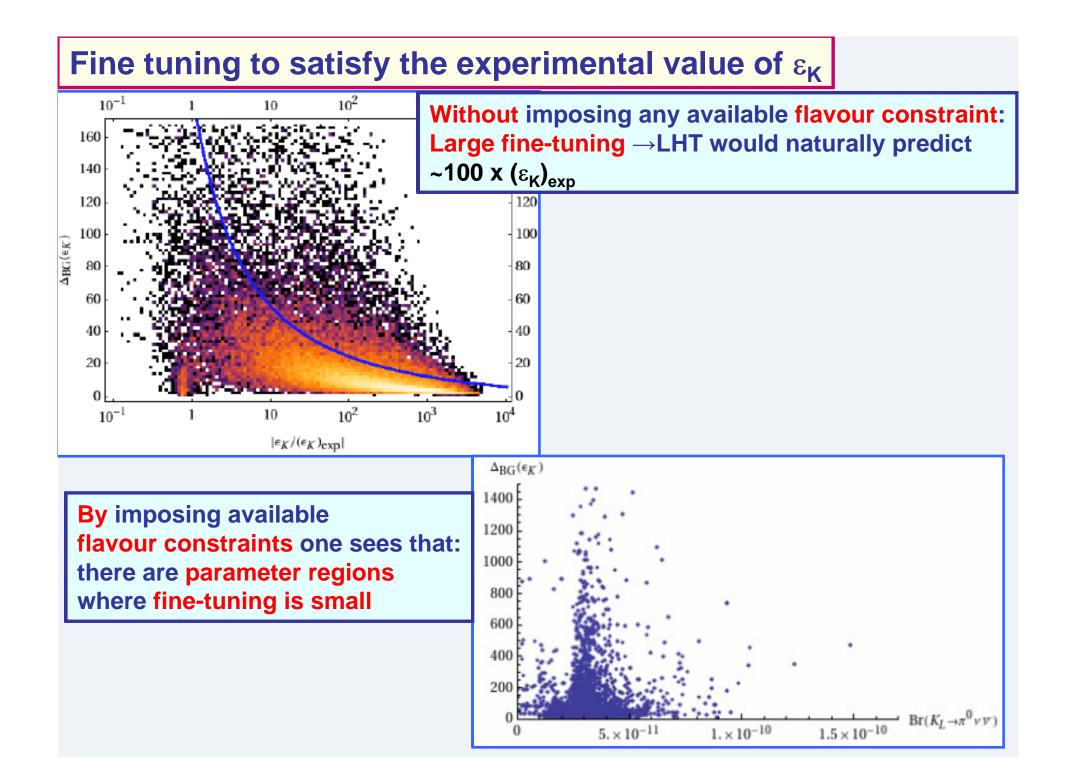
We have updated some experimental and theoretical inputs

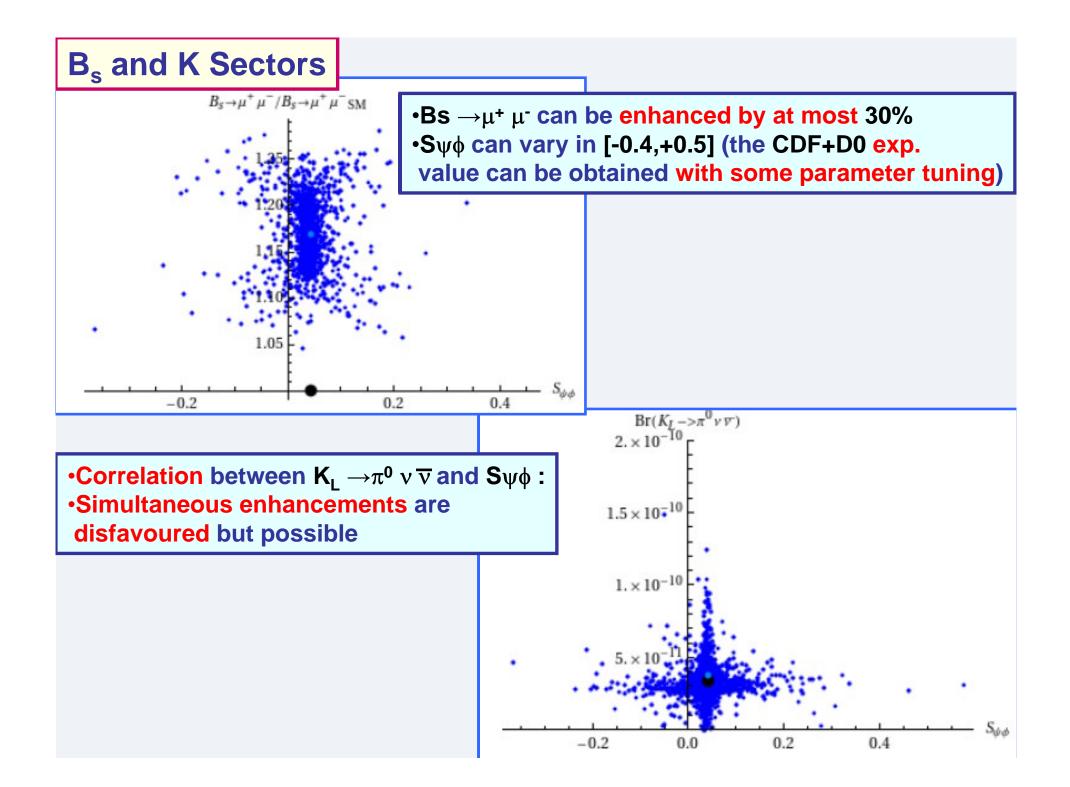
Numerical Analysis: Quark and Lepton Sectors

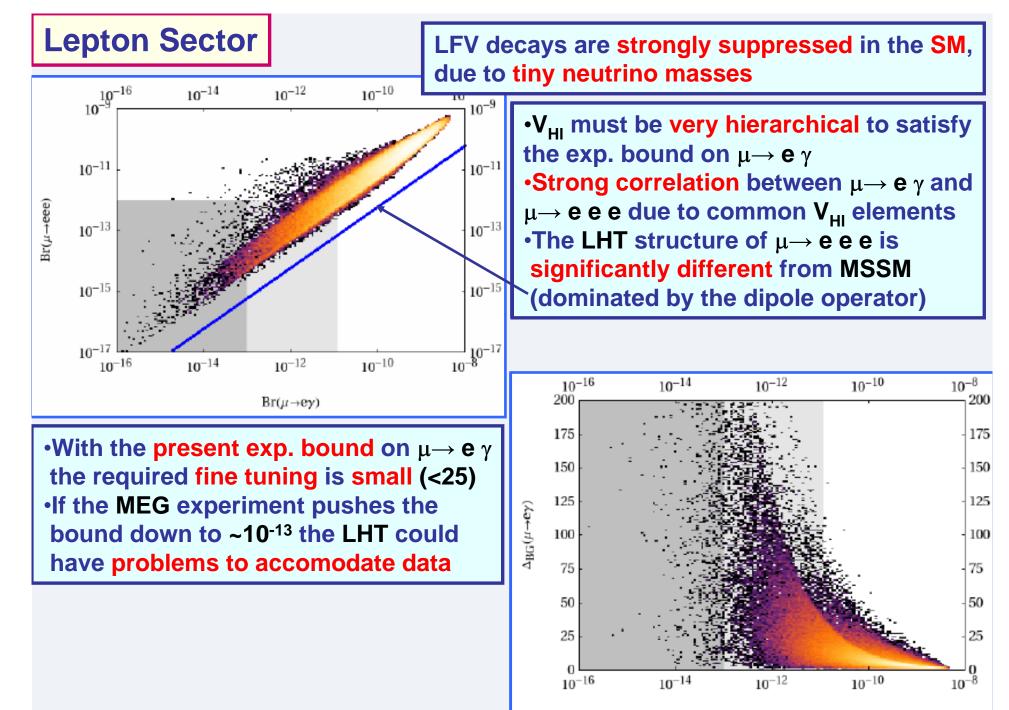
•Being interested in pointing out visible LHT effects, we perform a general scan over the LHT parameters

Quark sector


•f = 1 TeV (or 500 GeV)
•300 GeV ≤ m_{Hi} ≤ 1 TeV
•general scan over V_{Hd}


Lepton sector


•f = 1 TeV (or 500 GeV) •300 GeV $\le m'_{Hi} \le 1.5$ TeV •general scan over V_{H/}


•Input parameters flatly extracted in 1σ ranges •Flavour observables required to lie within experimental 1σ ranges or to satisfy experimental bounds

•In studying fine-tuning we use the
Barbieri-Giudice definition (Nucl.Phys.B306 (1988))
$$\Delta_{BG}(O) = \max_{j=1,...,m} \{ \Delta_{BG}(O, p_j) \}, \\ \Delta_{BG}(O, p_j) = \left| \frac{p_j}{O} \frac{\partial O}{\partial p_j} \right|,$$

 $Br(\mu \rightarrow e\gamma)$

LHT upper bounds for LFV decays

The removal of the UV-cutoff divergence lowers the Br's for τ decays in 3 leptons by almost an order of magnitude
However, for f<1 TeV LFV decays can be seen at a SuperB factory

decay	$f=1000{\rm GeV}$	$f=500{\rm GeV}$	SuperB sensitivity
$\tau \rightarrow e \gamma$	$8 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	$2 \cdot 10^{-9}$
$\tau \rightarrow \mu \gamma$	$8 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	$2 \cdot 10^{-9}$
$\tau^- \rightarrow e^- e^+ e^-$	$1 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	$2 \cdot 10^{-10}$
$\tau^- \rightarrow \mu^- \mu^+ \mu^-$	$1 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	$2 \cdot 10^{-10}$
$\tau^- \rightarrow e^- \mu^+ \mu^-$	$1 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	
$\tau^- \rightarrow \mu^- e^+ e^-$	$1 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	
$\tau^- \rightarrow \mu^- e^+ \mu^-$	$6 \cdot 10^{-14}$	$1 \cdot 10^{-13}$	
$\tau^- \rightarrow e^- \mu^+ e^-$	$6 \cdot 10^{-14}$	$1 \cdot 10^{-13}$	
$\tau \rightarrow \mu \pi$	$4 \cdot 10^{-10}$	$5\cdot 10^{-8}$	
$\tau \to e\pi$	$4 \cdot 10^{-10}$	$5 \cdot 10^{-8}$	
$\tau \rightarrow \mu \eta$	$2 \cdot 10^{-10}$	$2\cdot 10^{-8}$	$4 \cdot 10^{-10}$
$\tau \rightarrow e \eta$	$2 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	$6 \cdot 10^{-10}$
$\tau \rightarrow \mu \eta'$	$1 \cdot 10^{-10}$	$2\cdot 10^{-8}$	
$\tau \rightarrow e \eta'$	$1 \cdot 10^{-10}$	$2\cdot 10^{-8}$	

Correlations: visible differences between LHT and MSSM

•Correlations are less parameter-dependent •Different pattern in $I_i \rightarrow I_j I_k^+ I_k^-$ between LHT (dominated by Z⁰-penguin and box diagram) and MSSM (dominated by dipole operator)

ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\frac{Br(\mu^- \rightarrow e^- e^+ e^-)}{Br(\mu \rightarrow e\gamma)}$	0.021	$\sim 6 \cdot 10^{-3}$	$\sim 6\cdot 10^{-3}$
$\frac{Br(\tau^-\!\rightarrow\!e^-e^+e^-)}{Br(\tau\!\rightarrow\!e\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{Br(\tau \rightarrow \mu \gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}$	0.060.1
$\frac{Br(\tau^- \rightarrow e^- \mu^+ \mu^-)}{Br(\tau \rightarrow e\gamma)}$	0.040.3	$\sim 2 \cdot 10^{-3}$	$0.02 \dots 0.04$
$\frac{Br(\tau^-\!\rightarrow\!\mu^-e^+e^-)}{Br(\tau\!\rightarrow\!\mu\gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^-{\rightarrow}e^-e^+e^-)}{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}$	0.82.0	~ 5	0.30.5
$\frac{Br(\tau^-{\rightarrow}\mu^-\mu^+\mu^-)}{Br(\tau^-{\rightarrow}\mu^-e^+e^-)}$	0.71.6	~ 0.2	510
$rac{R(\mu \mathrm{Ti} ightarrow e \mathrm{Ti})}{Br(\mu ightarrow e \gamma)}$	$10^{-3}\dots 10^2$	$\sim 5\cdot 10^{-3}$	0.080.15

Conclusions

The Littlest Higgs Model with T-parity

•solves the little hierarchy problem

•is compatible with ew precision tests

•introduces new flavour violating interactions

•can yield large effects in Flavour Physics: in particular in the Kaon sector and in Lepton Flavour Violating decays

Correlations of Br's could provide a clear distinction between LHT and other NP models (custodial RS, MSSM) !!

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.