KATRIN: An experiment to determine the neutrino mass

Florian Fränkle
for the KATRIN Collaboration
Motivation from cosmology

Upper limit on neutrino mass: $m_\nu < 2.3 \text{eV (}\beta\text{-decay)}$

- determine absolute neutrino mass scale
- probe cosmological relevant region
- help to understand neutrino mass generation mechanism

KATRIN: only model independent determination of “electron anti-neutrino mass”, sensitivity: 0.2 eV
Tritium β-decay

Fermi theory of β-decay:

$$\frac{dN}{dE} = C \cdot F(E,Z) \cdot p(E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_\nu^2}$$

observable:

$$m_{\nu e}^2 = \sum_{i=1}^{3} |U_{ei}|^2 m_i^2$$

tritium as β emitter:

- high specific activity (half-life: 12.3 years)
- low endpoint energy E_0 (18.57 keV)
- super-allowed

$$3H \rightarrow 3He + e^- + \bar{\nu}_e$$
The KATRIN experiment (KArlsruhe TRItium Neutrino experiment, location: Forschungszentrum Karlsruhe) involves the following processes:

- Tritium decay
- Electron transport
- Tritium retention
- Energy analysis

The experimental setup is 70 m long. Key parameters include:

- **β-decay rate:** 10^{11} Hz
- **T$_{2}$ pressure:** 10^{-6} mbar

The background rate is significantly lower:

- **Background rate:** 10^{-2} Hz
- **T$_{2}$ pressure:** 10^{-20} mbar

Approximately 14 orders of magnitude separate the decay rate from the background rate.
WGTS

purpose: Delivery of 10^{11} β-decay electrons per second

requirements:
- Stability of T_2 density profile of 10^{-3} (function of: injection rate, purity, beamtube temperature T_B, pump rate)
- T_B homogeneity ± 30 mK
- T_B stability ± 30 mK \cdot h$^{-1}$

properties:
- Beam tube: 10m length, 90mm diameter, absolute temperature 30K
- Tritium loop: 40g T_2 / day

status:
- Demonstrator to test new cooling concept 2009
- Construction 2010/11
- Commissioning 2012

TLK provides complex infrastructure to handle tritium
Tritium retention

Differential Pumping Section:

Purpose: reduce T_2 flux by 10^5

- differential pumping of T_2 (TMPs)
- magnetic guiding of electrons (5.6T)
- removal of positive ions (dipole)

Status:
- Delivered to FZK 2 days ago!
- Acceptance tests
- Test program 2010

Cryogenic Pumping Section:

Purpose: reduce T_2 flux by 10^7

- Cryosorption of T_2 on Argon frost
- Concept successfully tested (TRAP)

Status:
- Technical design report is ready
- Presently being manufactured at ASG
- Delivery to FZK on 10.2010
- Commissioning 2011
 Arrival of DPS
Tritium Retention

Differential Pumping Section:
- **Purpose:** Reduce T_2 flux by 10^5
- **Status:**
 - Delivered to FZK 2 days ago!
 - Acceptance tests
 - Test program 2010

Cryogenic Pumping Section:
- **Purpose:** Reduce T_2 flux by 10^7
- **Status:**
 - Technical design report is ready
 - Presently being manufactured at ASG
 - Delivery to FZK on 10.2010
 - Commissioning 2011

- Differential pumping of T_2 (TMPs)
- Magnetic guiding of electrons (5.6T)
- Removal of positive ions (dipole)
- Cryosorption of T_2 on Argon frost
- Concept successfully tested (TRAP)

Differential Pumping Section Diagram:
- Stainless steel
- Cryogenic Pumping Section Diagram:
main spectrometer

purpose: energy analysis

requirements:
- energy resolution 0.93eV @ 18.6keV
- pressure < 10^{-11}mbar
- background event rate < 10mHz
- stable HV system (1ppm @ -18.6kV)

properties:
- MAC-E filter (integrating high pass filter)
- volume: 1240m³, surface: 689,6m²
- inner electrode system
- variable voltage to scan E_0 region

status:
- First vacuum test without getter pump successful (10^{-10}mbar)!
- Mounting of inner electrode system
- Electro-magnetic test measurements 2010

background rejection:
- $U_0=-18.4kV$
- U_0-100V
- U_0-200V
main spectrometer
detector system

purpose: counting transmitted β-decay electrons

requirements:
- intrinsic background rate < 1mHz in RoI
- electron energy range 5 to 100keV
- energy resolution < 1keV

properties:
- segmented monolithic Silicon PIN Diode
- 148 pixels, area ~ 50mm2 each
- post acceleration (up to 30kV)

status:
- Assembly and initial commissioning until 02/2010
- Delivery to FZK 03/2010
pre-spectrometer

purpose: reduce β-decay electron flux by 10^6

- MAC-E filter
- energy resolution 70eV @ -18.4keV
- pressure 10^{-11}mbar

prototype for main spectrometer:
- vacuum concept successfully tested ($p = 10^{-11}$mbar, routinely)
- active HV stabilization tested
- test of new electromagnetic design
- background suppression
- optimization of electrode system

status:
- end of test measurements 12/2009
- relocation of pre-spectrometer to main spectrometer hall 2010
Penning trap

Combination of electric and magnetic fields can create Penning traps

- Detailed investigations of Penning traps
- Check of parameter space: pressure, potential, magnetic field

→ Penning discharge can be major background source!
new electrodes

- new electrodes to remove Penning trap
- design also applied to main spectrometer

Anti Penning electrode

Ground electrode

G 0kV
A -18kV
B -18kV
new electrodes

- new electrodes to remove Penning trap
- design also applied to main spectrometer
Penning discharge

- a 180V deep penning trap ignites after some minutes.
- ignition stops if $B < A$ (as expected from calculation)

→ Penning discharge is under control!
summary & outlook

- KATRIN will measure electron anti-neutrino mass with a sensitivity of 0.2 eV
- Tritium source: construction 2011/12
- Tritium retention:
 - DPS: arrived 2 days ago, acceptance tests & test program
 - CPS: TDR ready, presently being manufactured, delivery to FZK 10/2010
- Pre-spectrometer: test setup important for main spectrometer design
- Main Spectrometer: electrode installation & start of EM test program 2010
- Detector: assembly & initial commissioning, delivery to FZK 03/2010
- Assembly of components & system integration 2011/12
- Start of T_2 measurements: summer 2012
discovery potential

\begin{align*}
\text{discovery potential} \ [\sigma] \quad m_\nu &= 0.4 \text{eV} \\
\text{discovery potential} \ [\sigma] \quad m_\nu &= 0.3 \text{eV} \\
\text{discovery potential} \ [\sigma] \quad m_\nu &= 0.2 \text{eV}
\end{align*}

full beam time \ [y]

90\% up. lim. on \ m_\nu \ [\text{eV}]

full beam time \ [\text{months}]

\begin{align*}
90\% \text{ up. lim. on } m_\nu \ [\text{eV}] \\
0 &\quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12
\end{align*}
energy spectra

counts per HV bin

residuals

$\text{m(\nu)} = 0 \text{eV}$

$\text{m(\nu)} = 0.5 \text{eV}$

10 MHz bgd

endpoint energy

$<\text{res}> = +1.5$

$<\text{res}> = -0.05$
MAC-E filter

Magnetic Adiabatic Collimation combined with an Electrostatic Filter

Magnetic moment:

\[\mu = \frac{E_t}{B} = \text{const} \]

Energy resolution:

\[\Delta E = \frac{B A}{B_{\text{max}}} E_t \]

transmission if \(E > E_0 + E_t \frac{B_A}{B_{\text{max}}} \sin^2(\alpha) \)