

Low mass Higgs and Higgs properties at the LHC

Junichi TANAKA ICEPP, University of TOKYO On behalf of ATLAS and CMS collaboration

Outline

- Introduction
- Higgs search
 - Η->γγ
 - VBF H-> $\tau\tau$
 - ttH, H->bb
 - ttH/WH, H->WW
- Higgs property measurement
 - Mass
 - Coupling
- Summary

Introduction

- The discovery of the Higgs boson is a crucial goal of LHC.
- Tevatron has excluded a region of 160-170GeV.
- According to LEP EW working group,

m_H=90(+36-27)GeV m_H < 163 GeV/c² @95% C.L.

is preferred. (see the right plot)

- Search of low mass Higgs is very interesting.
 - SUSY usually needs a Higgs Boson below 135GeV.
- Today, we show results based on the latest simulation with 14TeV center of mass energy (except for coupling);
 - H->γγ
 - VBF H->ττ
 - ttH, H->bb
 - ttH/WH, H->WW

gg->H->WW, H->ZZ->4I and combined discovery potential results will be shown by Cristina.

16 July, 2009

EPS HEP 2009@Krakow

 χ^2

SM Higgs Production and Decay at LHC

- Small BR (~0.2%) but a narrow mass peak can be observed on a smooth (but quite large) background.
 - Key to mass resolution is
 - Photon energy calibration
 - Precise determination of photon direction

Mass resolution of 120GeV Higgs = 1.4 GeV (ATLAS)

 $H - > \gamma \gamma$

- Conversion rate is high in ATLAS and CMS.
 - ~60% of H->γγ events has at least one conversion.
 - Understanding of material in front of EM calorimeter is important.
 - Conversion identification
 - Energy resolution
 - Primary vertex
 - Material estimation

- To improve S/B, additional jets (VBF characteristic) are required.
 - +1 and +2 jets analysis have been studied (ATLAS).
 - The motivation of +1 jet analysis is
 - Additional jet in GF process
 - Recovery of VBF process (one forward jet is out of acceptance etc.)
 - In case of 2 jets analysis, 3rd jet veto (central jet veto) is also applied.

VBF H->ττ

- VBF process has two important characteristics, which are very useful to suppress background.
 - Two forward jets (opposite hemisphere)
 - No color exchange in the central region -> small jet activity in the central (central jet veto)
- We can reconstruct $M(\tau\tau)$, which corresponds to Higgs mass, using missing Et with the collinear assumption. -> A Higgs mass peak on the right side of Z peak can be observed. $\tau^+\tau^- \rightarrow h v_\tau \ell v_\tau v_\ell$

VBF H->ττ

- Tau identification
 - Reject QCD and W+jets backgrounds and keep signal events
- Mass reconstruction
 - Reconstruction and Resolution of Missing Et
 - -> Understanding of a long tail of DY is very important to claim the discovery. (related to Z-> $\tau\tau$ BG estimation)
- Background estimation using real data
 - Z->ττ shape can be estimated from Z->μμ by replacing μ to τ. (embedding method)
 - QCD and W+jets can be estimated by SS method.
 - ttbar under investigation, 4 jet bin, SumEt or b-tag...
- Study of 3rd jet for the central jet veto cut
 - Rapidity gap is a crucial signature of VBF.
 - Understand this uncertainty using several generators.
 - Can we estimate its probability from data?
- Pileup affect on all the above items.

VBF H->ττ

- ATLAS : Significance ~ 5 sigma with 30fb⁻¹ data (14TeV)
 - hh-channel is under investigation. -> QCD BG estimation from data is critical.
- CMS : $\sigma/\sigma_{SM} \sim 9$ with 1fb⁻¹ data (14TeV)

ttH, H->bb

- This process was one of discovery channels for low mass Higgs.
- With more realistic Monte Carlo studies, we found that
 - The combinatorial background from the signal degrades the mass resolution badly.
 - Difficulty of estimation of both background shape and normalization by using real data. -> difficult to separate signal from background.
- Now this is not a discovery channel but important for bottom Yukawa coupling measurement.

ttH/WH, H->WW

- Three different channels have been studied with the latest full simulation at ATLAS.
 - Two same charged leptons are required in ttH, H(160GeV)->WW.
 - Signal = 1.9 fb, background = 10 fb
 - Three leptons are required in ttH, H(160GeV)->WW.
 - Signal = 0.8 fb, background = 3.4 fb
 - Three leptons are required in WH, H(160GeV)->WW.
 - Signal = 0.3 fb, background = 0.4 fb
- Since we cannot reconstruct Higgs mass peak in H->WW (not full had), it is difficult to separate signal from background.
 - Development of background estimation from real data is necessary. (on going)
- These processes are important to measure couplings, particularly, a ratio to ttH, H->bb.
 - $H \rightarrow \tau \tau$ channel is also useful in low mass region.

Measurement

- Once we discover Higgs-like particle, we need to measure its properties, that is, mass, width, spin, CP, couplings and so on.
- Mass ... Next page
- Width ... direct measurement is very difficult for low mass Higgs. (0.1~1% level in m_H>200GeV with H->ZZ->4I, ATLAS TDR)
- Spin and CP (and anomalous coupling)
 - "H-> $\gamma\gamma$ " -> spin = 0 or 2
 - H->WW $\Delta \phi_{\parallel}$ correlation -> spin = 0
 - H->ZZ->4I -> Spin and CP
 - Forward jets of VBF process
- Couplings
 - "Origin of mass" should be confirmed.
 - We expect that Yukawa coupling has a linearity with respect to the particle mass. That is the SM prediction.
 - -> top, bottom and tau Yukawa coupling measurement can be done at the LHC.

Mass

- ATLAS
 - Resolution with the latest simulation;
 - ~1.2% with H-> $\gamma\gamma$ and ~1.6-2% with H->ZZ->4I (almost same as ATLAS TDR)
 - Mass determination precision ~ 0.1% (m_H < 400GeV) (from ATLAS TDR)
- CMS

~0.1% can be achieved in low mass region.

Ratio of Couplings

In the low mass region, we can measure event rates of Higgs with multi modes. So we can extract coupling information, particularly, determination of ratios is possible with a model-independent way. ATLAS-PHYS-2003-030

With 300fb⁻¹: • Yukawa • g_t^2 : 15-30% • g_b^2 : 35-70% • g_τ^2 : 25-50% • Gauge Boson • g_z^2 : 10-40%

This is slightly old result. (based on our old results)

Bottom Yukawa can be also measured by using WH/ZH, H->bb (high boosted Higgs). -> new technique, under investigation

14

Summary

- Discovery of low mass Higgs at the LHC (14TeV) is promising.
 - Covered by several channels!!! H-> $\gamma\gamma$, $\tau\tau$, WW and ZZ.
 - Development of BG estimation from data is on-going.
- The existence of low mass Higgs is interesting from a viewpoint of coupling measurement.
 - Top, bottom and tau Yukawa coupling measurement can be done at the LHC.
 - Bottom Yukawa has the largest uncertainty.
 - New analysis technique (high boosted Higgs with WH/ZH, H->bb)
 - ttH, H->bb measurement should be improved more.
- Even with 10TeV energy, LHC is still the discovery machine of Higgs and BSM.
 - Production x-sec of 10TeV decreases by ~60-70% with respect to 14TeV.

Backup

EPS HEP 2009@Krakow

Reference

- ATLAS
 - CERN-OPEN-2008-020 ... ATLAS CSC Book
 - ATLAS-PHYS-2003-030
 - CERN/LHCC/99-15 ... ATLAS TDR
- CMS
 - CERN/LHCC 2006-021
 - CMS PAS HIG-08-001, 008

14TeV -> 10TeV

 W⁺: 109nb -> 78nb (72%), W⁻: 80nb -> 55nb (69%), Z: 58nb->40nb (69%) ttbar: 876pb -> 396pb (45%)

- gg->H(120): 37pb -> 21pb (57%)
 - qq->qqH(120): 4.6pb -> 2.6pb (57%)

16 July, 2009

EPS HEP 2009@Krakow

Absolute Coupling Determination

• Need a help of theory to obtain the absolute values of couplings.

Assumption [hep-ph/0407190] :

- HVV (V=W,Z) couplings cannot be larger than the SM case, namely,
 - $g^{2}(H,W) < g^{2}_{SM}(H,W)$
 - g²(H,Z) < g²_{SM}(H,Z)
 This constraint is valid in generic multi-Higgs-doublet models. (eg. MSSM)

Summary of Studies for SM Higgs

Production	Decay	Mass region and purpose	
Gluon Fusion	Η -> γγ	110-140GeV	Discovery, Mass
	H -> ZZ-> 41	140- 800 GeV	Discovery, Mass, spin, coupling
	H -> WW	130-170 GeV	Discovery
Vector Boson Fusion	Η -> ττ	110-140GeV	Discovery, Mass, coupling
	H -> WW	130-200GeV	Discovery, W coupling
	Η -> γγ	110-140GeV	Discovery, Mass
	H -> bb	110-140GeV	Yb coupling (need study of trigger)
ttH	H -> bb	110-130GeV	
	Η -> ττ	110-130GeV	Yt, Yb, Yτ, W coupling
	H -> WW	130-180GeV	
WH/ZH	H -> WW	140-170GeV	W coupling
	H -> bb	110-130GeV	Yb coupling
1/ 1 0000	EDS LIED 2000@Krakow		