Status of the T2K experiment

Ken Sakashita(KEK) for the T2K collaboration 2009/July/17, EPS HEP conference

- 1. Introduction of T2K experiment
 - Motivation, Features and Sensitivity
- 2. Beam Commissioning in Apr-May '09
 - T2K v beam-line operation started
- 3. Status of preparation toward physics run
- 4. Future prospects
- 5. Summary

Next step of ν oscillation experiment

Neutrino Oscillation Experiment

• determine $|U_{e3}|$

$$U_{e3} = s_{13}e^{-10}$$
NEUTRINOS
$$U_{MNSP} \sim \begin{pmatrix} 0.8 & 0.5 & ? \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

- → important role for future neutrino experiments
 - CPV in lepton sector
 - → hint on Baryon# asymmetry of Universe
 - mass hierarchy

• Is θ_{23} maximal ?

ονββ decay exp. • Dirac or Majorana Tritium β decay exp. • absolute mass scale

Next step of v oscillation experiment

T2K Experiment

0 🚡

0.5

1

2

1.5

25

3

3

3.5

Off-axis beam : intense & narrow-band beam

Sensitivity

 ν_e appearance

> x10 improvement from CHOOZ limit

ν_{μ} disappearance

@ 8 x 10²¹ protons(30GeV) on target

Beam commissioning and status of preparation toward physics run

Construction completed & Operation was started

- * MR
 - successfully accelerate the beam up to 30GeV (Dec.2008)
 - successfully operate with 6-bunches (so far 3.5kW beam power) (Jun.2009)

T2K Neutrino Beam-line

• Completed the beam-line construction [2004~2009, 5 years] (Horn-2,3 to be installed in this summer)

start beam commissioning in April '09 as scheduled

with low intensity (typically 4×10^{11} p/pulse) beam to reduce radio-activation of target area for Horn-2,3 installation in summer '09

T2K neutrino beam-line starts operation

(First beam in Apr/23/2009)

proton profile just in front of the target

Muon monitor signal at 1st shot after SC turned on

We successfully started to produce neutrino beam

Achievements in the beam commissioning

9 days, 705 shots in total (Apr-May '09)

- transfer the proton beam without any significant beam loss
- SC combined function magnets work as expected
- Muon yield is increased by Horn On
- ✓ control beam position on the target
- Successfully pass the government inspection of radiation
- ☑ operate with several beam condition (e.g. 2-bunches operation)

T2K v beam-line works with expected performance

Muon monitor signal with/without Horn Magnet (online monitor)

ON

(273kA)

Horn

Status of preparation toward physics run

• Horn 2,3 installation and construction, installation of Near Detector(ND) are going on

• FGD2 (w/ water target): final

Horn-2

installation

Prospects & Schedule

We aim for better sensitivity than the current limit by CHOOZ in 2010 as a first step

- T2K beam commissioning in fall-winter 2009
 - with full setup (3 Horns, NearDetector)
 - with high intensity beam
- physics run starts in Dec. 2009

 $\sin^2 2 \theta_{13}$ sensitivity 0 20% svs error Next : We hope to discover V_e appearance with $1-2 \times 10^7$ MW*sec in a few years • $\sin^2 2\theta_{13} = 0.05 (3\sigma \text{ discovery } @ 1MW^*\text{sec})$ 0.03 (3 σ discovery @ 2MW*sec) Final results with 3.75 x 10⁷ MW*sec 10^{-3} 10⁻¹- $(8x10^{21} p.o.t.)$ x 0.75 x 10⁷ MW*s T2K goal x 107MW*s

90% CL θ_{13} Sensitivity (δ =0)

Systematic Error Fraction

5% svs error

10% sys error

CHOOZ

excluded

Summary

- T2K neutrino oscillation experiment, our goals are
 - discover $v_{\mu} \rightarrow v_{e}$ appearance (a finite θ_{13}) one order of magnitude sensitivity improvement from the current limit
 - v_{μ} disappearance for precise measurement of sin²2 θ_{23} , Δm^{2}_{23}
- First beam commissioning was successfully completed
 - neutrino production was confirmed with observing muon signal
 - confirmed basic functionality of the T2K beam-line
- Installation & construction works are going on toward physics run
- Aim for better sensitivity than the current limit by CHOOZ in 2010

backup

1. J-PARC outline, parameters and beam commissioning status

2. Issues to be solved: RFQ, RCS RF cavity and MR magnet power supply

3. Plan: (1) Neutrinos (Fast Extraction)
(2) Hadrons (Slow Extraction)
(short term, middle term and long term)

M.Yoshioka's talk, "J-PARC Status and Plan" @ CERN Workshop on New Opportunities in the Physics Landscape at CERN

(1)T2K and beyond:

3-step Power Upgrade Scenario Based on the assumption that three machine issues will be solved in a few years

- Short term plan (2009~2010)
 - FY2009 → Establish 30 kW run and 100kW trial
 - FY2010 → Establish 100kW (10⁷ sec) and 300kW trial
- Middle term plan (2011~in a few years??) Achieve design beam power (750kW)
 - Understanding/solving space charge effect and collimator scenario/aperture
 - Improvement of MR magnet power supply to increase repetition rate
 - **Linac 400 MeV energy recovery and upgrade of the RCS injection system**
- Long-term plan toward power frontier (>MW)
 - KEK roadmap

v Energy Reconstruction

• v's Energy reconstruction is possible for CC Quasi-Elastic interaction (CCQE: $v_{\mu(e)} + n \rightarrow \mu(e) + p$)

θ_{13} measurement by v_e appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \frac{4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}}{+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}}{+8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}} \qquad \square P(\nabla) \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}} \qquad \square P(\nabla) \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21}} \qquad \text{solar} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31}} \qquad \text{matter effect} \\ (\text{small in T2K}) \end{cases}$$

$$L = 295 \text{ km}, < E_{\nu} > \sim 0.6 \text{ GeV} \qquad \delta \rightarrow -\delta, \ a \rightarrow -a \text{ for } P(\nu_{\mu} \rightarrow \nu_{e}) \\ \frac{aL}{4E} = 7.6 \times 10^{-5} [\text{eV}^{2}] \left(\frac{\rho}{[\text{g}(\text{cm}^{3}]}\right) \left(\frac{E}{[\text{GeV}]}\right) \frac{L}{4E} \propto 10^{-5} \text{ solar}}$$

- $P(v_{\mu} \rightarrow v_{e}) \rightarrow sin^{2}(2\theta_{13})$: some ambiguity due to unknown params.
- It is possible to measure CPV by comparing ν and ν –

v_e appearance search

- Signal : e^{-} from v_{e} CCQE int.
- Background
 - intrinsic v_e in the v_μ beam (0.4% of v_μ at peak energy)
 - NC $1\pi^0$ interaction
 - π^0 misidentified as e
 - further e/π⁰ separation cut & understanding efficiency

first look in agreement with simulation

Tracking plane efficiency 99.5 ± 0.6 %

