

ATLAS performance in B-physics channels sensitive to new physics

James Catmore (Lancaster University, UK) for the ATLAS Collaboration

The ATLAS B-physics programme

Fi	ve main strands	$\int \mathcal{L}$	Activity		
	Understanding the detector performance (alignment/tracking/trigger) using well understood B-decays	<10 pb ⁻¹	Validation of ID/trigger performance and alignment, data quality monitoring with J/ ψ and Υ		
	sections for B-hadrons and onia $(J/\psi, \Upsilon)$ to test QCD predictions for pp collisions at the LHC	20-200 pb ⁻¹	Continuing performance studies; measurement of <i>bb→</i> J/ψ, pp→J/ψ, and B ⁺ →J/ψK ⁺ cross section ratios		
•	Studies of the properties of the complete B-meson family (B ⁺ , B _s , B _c , Λ_b + h.c.)	200 pb ⁻¹ -1 fb ⁻¹	Collect larger numbers of the main B- decays; start to contribute to world averages on B-hadron properties; start to set limits on rare decay branching ratios		
•	Precise measurements of weak B-hadron decays to search for BSM CP-violating effects	I-30 fb⁻ ^I	Searches for new CP-violation in weak decays of B-mesons; rare decay searches; onia and Λ _b polarization studies;		
LAS	Searches for rare B-decays (such as $B_s \rightarrow \mu \mu$)	>30 fb ⁻¹	"High" LHC luminosity - main period for rare dimuon decay searches		
K	James Catmore EPS HEP C	Conference, Kral	kow, Poland, July 2009		

Triggers for B-physics di-muon events

- Many B-physics channels of interest involve a di-muon signature, e.g. $B \rightarrow J/\psi(\mu\mu)X$, $b \rightarrow s\mu\mu$, $B \rightarrow \mu\mu$ etc
- Muons from B-decays typically have rather low momenta (often <10 GeV)
- The most effective trigger for such events uses the di-muon signature from the lowest trigger level. This is the strategy deployed for ATLAS B-physics
 - If a single muon trigger is used we must either pre-scale or raise the threshold, to keep the rate to an acceptable level. This would have serious implications for efficiency
 Topological di-muon trigger
- Two main di-muon approaches:

Topological di-muon trigger (main B-physics data taking phase)

- Two muons at level I with separate regions of interest (RoI); these muons then combined at L2 to generate an invariant mass / vertex fit which cuts are applied
- TrigDiMuon (early data)
 - One muon at level 1, then widen RoI at L2 and search for a second muon; invariant mass cut then applied. Search for second muon candidate in the inner detector tracks and then confirm in muon detectors
- These efficient, fast and clean di-muon triggers will enable ATLAS B-physics studies to continue throughout the life of the LHC

Topological di-muon trigger (2 Rol; 2 L1 muons)

TrigDiMuon (I Rol; I LI muon)

Introduction to $B_s \rightarrow J/\psi \varphi$ and $B_d \rightarrow J/\psi K^{0*}$

- The channel $B_s \rightarrow J/\psi \varphi$ is a promising indirect route to New Physics
 - "Weak mixing phase" φ_s has been calculated in the SM and is very small (-0.0368±0.0018) but may be enhanced by BSM processes
- The time-dependent angular distribution of this decay depends on 7 physics parameters: 2 independent complex transversity amplitudes, mean lifetime and mass eigenstate width difference (ΔΓ), weak mixing phase
- The analysis ultimately will involve a fit to these parameters, and is sensitive to
 - statistics, experimental resolutions of lifetime, mass and decay angles
 - flavour tagging performance, background rejection
- Early statistics do not permit the full fit e.g. in D0/CDF a few thousand signal events allowed a 2-dimensional profile likelihood fit in the ϕ_s - $\Delta\Gamma$ plane. At the full LHC potential the simultaneous determination of all 7 parameters will be possible
- With small integrated luminosities, the ATLAS programme will begin with calibration measurements supporting this analysis
- The topologically identical $B_d \rightarrow J/\Psi K^{0*}$ (15x greater statistics) is the primary background and is also essential as a control channel
 - High precision tests of lifetime measurement systematics
 - Flavour tagging calibration

$B_s \rightarrow J/\psi \varphi$ and $B_d \rightarrow J/\psi K^{0*}$ with early data

- With the earliest data ATLAS will use a fit to simultaneously access the mean mass and lifetimes of the B_s and B_d mesons
- This will enable sensitive tests of our understanding of the tracking pt scale after 150 pb⁻¹, and will start to improve world precisions on these measurements after about 1 fb⁻¹
- Early on, topologically similar backgrounds will be admitted to the analysis and secondary vertex cuts will not be applied
- After 10 pb⁻¹ the precision on the B_d lifetime will be 10% and similar precision for the B_s mean lifetime will be available after 150 pb⁻¹

Deveneter	B _d →J/ψK⁰* a	after 10 pb ⁻¹	B₅→J/ψφ after 150 pb ⁻¹		
Farameter	Simulated value	Fit result + st error	Simulated value	Fit result + st error	
Mean lifetime Г, ps ⁻¹	0.651	0.73 ± 0.07	0.683	0.743 ± 0.051	
Mean mass m, GeV	5.279	5.284 ± 0.006	5.343	5.359 ± 0.006	
Lifetime resolution σ , ps		0.132 ± 0.004		0.152 ± 0.001	
Mass resolution σ_B , GeV		0.054 ± 0.006		0.061 ± 0.006	
n _{sig} /N	0.16	0.155 ± 0.006	0.018	0.031 ± 0.005	
n _{bck1} /N	0.062	0.595 ± 0.017	0.397	0.379 ± 0.006	

ATLAS flavour tagging performance

- After about I fb⁻¹ it will be possible to extract interesting parameters from the $B_s \rightarrow J/\psi \varphi$ decays
 - FLAVOUR TAGGING (attempting to determine whether the decay is from a B_s or an anti-B_s) is an essential part of this decay. $B_s \rightarrow J/\psi \varphi$ is not self-tagging
 - ► In ATLAS, the best flavour tagging performance for $B_s \rightarrow J/\psi \varphi$ is obtained using the jet charge tagging algorithm, which is a "same side" tag
 - Utilize correlations between the original quark flavour and momenta, and the charge and momenta of the fragmentation products (jet charge tagging)
- Calibration of the jet-charge tag will be done with the self-tagging reference channel $B_d \rightarrow J/\psi K^{0*}$, and will validate Monte Carlo models for fragmentation
 - Validated Monte Carlo will be used to determine the tagger quality for $B_s \rightarrow J/\psi \varphi$

Tuned jet charge tagger performance					
Parameter	B _s →J/ψφ				
Luminosity	ا-150 IS0 IS	I.5 fb ⁻¹			
Tag Efficiency	0.870 ± 0.003	0.625 ± 0.005			
Wrong tag fraction	0.380 ± 0.004	0.374 ± 0.005			
Dilution	0.240 ± 0.009	0.251 ± 0.010			
Quality	0.050 ± 0.004	0.039 ± 0.003			

Summary of performance for $B_s \rightarrow J/\psi \varphi$ with 30fb⁻¹

B _s →J/ψφ					
Luminosity	30 fb-1 (≈3 years)	Signal proper time resolution	83 fs		
Statistics	~240 000	J/ψ trigger efficiency wrt Monte Carlo	72%		
Offline J/ψ→μμ candidate cuts	2 oppositely charged inner detector tracks matched with muons, pt> {6,4} GeV fitting to common vertex $\chi^2 < 6$; $M_{\mu\mu} \in \pm 3\sigma$, $\sigma = 58$ MeV	Offline φ→KK candidate cuts	 2 oppositely charged inner detector tracks not matched with muons, pt> 0.5 GeV fitting to common vertex χ²<6; 1009.2<m<sub>TT<1029.6 MeV</m<sub> 		
	4 tracks from J/ψ,φ candidates fitting to common vertex χ ² <10; resultant pt of refitted tracks > 10 GeV	Signal event selection efficiency wrt Monte Carlo	41% before secondary vertex cuts; 30% after		
candidate cuts		Background	~30% after secondary vertex cuts, dominated by $B_d \rightarrow I/WK^{0*}$ and bb→I/WX		

The rare decay $B_s \rightarrow \mu \mu$

- *Tiny* branching ratio in the Standard Model:
 - Mediated by FCNC that are forbidden at tree level (lowest-order SM-allowed diagrams below); helicity suppressed
 - $BR_{SM} = (3.42 \pm 0.52) \times 10^{-9}$
- Current experimental limits:
 - ► DZero (5fb⁻¹): $BR_{Bs \to \mu\mu} < 4.5$ (5.3) x 10⁻⁸ at 90% (95%) CL [D0 Note 5906-CONF 2009]
 - CDF (2fb⁻¹): $BR_{Bs \to \mu\mu} < 5.8 \times 10^{-8}$ at 95% CL [Phys. Rev. Lett. 100, 101802 (2008)]
- Could use this decay to
 - Test SM to high perturbative orders
 - Look for new physics effects via a modified branching ratio

Trigger and offline muon reconstruction performance for $B_s \rightarrow \mu \mu$

- The ATLAS di-muon trigger, excellent muon identification efficiency and high beauty production cross section will give us access to this channel at L=10³³ and 10³⁴ cm⁻²s⁻¹
- Trigger levels I and 2
 - Topological di-muon trigger: $pt > \{6, 6\}$ GeV; $M_{\mu\mu} < 7$ GeV; vertex $\chi^2 < 10$ (using L2 trigger tracking and vertexing algorithms)
- Event filter
 - As above but based on offline reconstruction algorithms and vertexing

Trigger performance for simulated $B_s \rightarrow \mu \mu$ events, L=10³³ cm⁻² s⁻¹

LI x L2 efficiency	Event filter w.r.t L2	Overall		
0.52	0.88	0.46		

Offline analysis strategy for $B_s \rightarrow \mu \mu$

For all events passing the dimuon trigger, oppositely charged muons with pt > {6,4} GeV are fitted to a common vertex **Fit** $\chi^2 < 10$

• Signal • Background

A. A cut is made on the transverse decay length L_{xy} of the B-candidate vertex $L_{xy} > 0.5 \text{ mm}$

I_{μμ}>0.9

a cone of

B. Cut made on pointing angle α is between dimuon summary momenta and the direction of the reconstructed secondary vertex, in frame of primary vertex α < 0.017 radians

Summary of ATLAS performance for $B_s \rightarrow \mu \mu$

- After I fb⁻¹ ATLAS will have collected O(10⁶) dimuons in the invariant mass range 4-7 GeV
 - This will allow tuning of cuts and potentially training of multivariate procedures
- After 10 fb⁻¹ (1 year @ 10³³) we expect (SM):

	B₅→μμ	bb→µµX
Efficiency	0.04	(2.0±1.4) × 10 ⁻⁶
Events yield	5.7	 4 + 3 _{- 0}

The ATLAS $B_s \rightarrow \mu \mu$ programme will continue throughout the lifetime of the detector

Conclusions

- The ATLAS B-physics programme will run from the earliest days of the experiment and will pursue indirect searches for New Physics via B-hadron decays
- An efficient, fast and clean di-muon trigger scheme will allow ATLAS to collect large numbers of B-hadron decays involving µµ final states, throughout the lifetime of the experiment
- After 30 fb⁻¹, ATLAS will have collected the following statistics:
 - ► ~270 000 $B_s \rightarrow J/\psi \varphi$ events with ~30% background
 - 5.7 $B_s \rightarrow \mu\mu$ events with 14 ⁺¹³-10 of the principle background assuming the Standard Model branching ratios
- Early data will provide valuable information on the detector performance, but will also allow calibration studies in support of New Physics searches.

Reserve slides

BSM physics from $B_s \rightarrow J/\psi \varphi$

 $J/\psi\left(\mu\mu
ight)\phi$

Mixing, decay and interference processes

The state and anti-state can decay to the same final state, and can also undergo mixing

New source of CP-violation may appear in the mixing, directly in the decay amplitudes, or in interference between the two processes

The main parameter of interest is the weak mixing phase ϕ_s

$$\phi_s \equiv 2 \arg \left[V_{ts}^* V_{tb} \right] + \phi_{BSM}$$

Flavour tagging definitions

LANCASTER UNIVERSITY

Efficiency
$$\varepsilon_{tag} = \frac{N_r + N_w}{N_t}$$
Dilution $D_{tag} = \frac{N_r - N_w}{N_r + N_w} = 1 - 2w_{tag}$ Wrong-tag
fraction $w_{tag} = \frac{N_w}{N_r + N_w}$ Quality $Q_{tag} = \varepsilon D_{tag}^2$

James Catmore EPS HEP Conference, Krakow, Poland, July 2009

Extracting new physics from $B_s \rightarrow J/\psi \phi$

- The state and anti-state decay to the same finalstate so it is necessary to separate out the CP-odd and CP-even states in order to be able to measure CP-violation
- This is done via a *transversity decomposition* where the decay amplitude is broken down into three component *transversity amplitudes* which each have a definite CP-eigenstate
- The amplitudes can only be accessed from the angles of the final decay products and the decay time of the B-meson. The angular distribution is non-trivial even in the absence of CP-violation effects since the decay is $S \rightarrow VV$
- The analysis involves identifying the decays, measuring the decay angles and decay time, and performing a maximum likelihood fit to the function which expresses the angular distribution in terms of the transversity amplitudes. The expression is model-independent.
- The weak phase can be obtained from this fit

$$B(t = 0) = B_s^0$$
Transversity amplitudes
$$W^+(\theta_1, \theta_2, \phi, t) = \frac{d\sigma}{d\theta_1 d\theta_2 d\phi dt} = \sum_k \Omega^{(k)}(t) g^{(k)}(\theta_1, \theta_2, \phi)$$

$$W^-(\theta_1, \theta_2, \phi, t) = \frac{d\sigma}{d\theta_1 d\theta_2 d\phi dt} = \sum_k \bar{\Omega}^{(k)}(t) g^{(k)}(\theta_1, \theta_2, \phi)$$

$$B(t = 0) = \bar{B}_s^0$$
Spin dynamics

Angular distribution and M.L. fit for $B_s \rightarrow J/\psi \varphi = 17$

k	2	$\Omega^{(k)}(t)$	g(t)
1		$ A_0(t) ^2$	$4\sin^2 heta_1\cos^2 heta_2$
	$\frac{1}{2} A_0(0) ^2$	$(1+\cos\phi_s)e^{-\Gamma_L^{(s)}t}+$	
	_	$(1-\cos\phi_s)e^{-\Gamma_H^st}+$	
		$2e^{-\Gamma_s t}\sin(\Delta M_s t)\sin\phi_s$	
2	L	$A_{\parallel}(t) ^2$	$(1+\cos^2 heta_1)\sin^2 heta_2-\sin^2 heta_1\sin^2 heta_2\cos2\chi$
	$\frac{1}{2} A_{\ }(0) ^{2}$	$(1+\cos\phi_s)e^{-\Gamma_L^{(s)}t}+$	
		$(1-\cos\phi_s)e^{-\Gamma_H^st}+$	
		$2e^{-\Gamma_s t}\sin(\Delta M_s t)\sin\phi_s$	
3	4	$ A_{\perp}(t) ^2$	$(1+\cos^2 heta_1)\sin^2 heta_2+\sin^2 heta_1\sin^2 heta_2\cos2\chi$
	$\frac{1}{2} A_{\perp}(0) ^2$	$(1-\cos\phi_s)e^{-\Gamma_L^{(s)}t}+$	
	-	$(1+\cos\phi_s)e^{-\Gamma_H^st}-$	
		$2e^{-\Gamma_s t}\sin(\Delta M_s t)\sin\phi_s$	
4	$\Re\{A$	$_{0}^{*}(t)A_{\parallel}(t)\}$	$2\sin^2 heta_1\sin^2 heta_2\sin2\chi$
	$rac{1}{2} A_0(0) A_{\ }(0)\cos(\delta_2-\delta 1)$	$(1+\cos\phi_s)e^{-\Gamma^s_L(t)}+$	
		$(1-\cos\phi_s)e^{-\Gamma_H^{(s)}t}+$	
		$2e^{-\Gamma_s t}\sin(\Delta M_s t)\sin\phi_s$	
5	\Im{A}	$(t)A_{\perp}(t)$	$-\sqrt{2}\sin 2 heta_1\sin 2 heta_2\cos \chi$
	$ A_{\parallel}(0) A_{\perp}(0)$	$e^{-\Gamma_s t} \{\sin \delta_1 \cos (\Delta M_s t) -$	
		$\cos \delta_1 \sin (\Delta M_s t) \cos \phi_s \} -$	
		$rac{1}{2} \Big(e^{-\Gamma_H^{(s)}t} - e^{-\Gamma_L^{(s)}t} \Big) \cos \delta_1 \sin \phi_s$	
6	$\Im{A_i}$	$\{t\}$	$\sqrt{2}\sin 2 heta_1\sin 2 heta_2\sin \chi$
	$ A_0(0) A_{\perp}(0)$	$e^{-\Gamma_s t} \{\sin \delta_2 \cos(\Delta M_s t) -$	
		$\cos \delta_2 \sin (\Delta M_s t) \cos \phi_s \} -$	
		$\left rac{1}{2} \left(e^{-\Gamma_H^{(s)} t} - e^{-\Gamma_L^{(s)} t} ight) \cos \delta_2 \sin \phi_s ight.$	

+ h.c.

$$L = \prod_{i=1}^{N} \int_{0}^{\infty} \frac{\left(\varepsilon_{tag}^{1} \varepsilon_{rec}^{1} W^{+}(t_{i}, \Omega) + \varepsilon_{tag}^{2} \varepsilon_{rec}^{2} W^{-}(t_{i}, \Omega) + be^{-\Gamma_{0}t_{i}}\right) p(t-t_{i}) dt}{\int_{t_{min}}^{\infty} \left(\int_{0}^{\infty} \left(\varepsilon_{tag}^{1} \varepsilon_{rec}^{1} W^{+}(t, \Omega) + \varepsilon_{tag}^{2} \varepsilon_{rec}^{2} W^{-}(t, \Omega) + be^{-\Gamma_{0}t_{i}}\right) p(t'-t) dt'\right) dt}$$

Reconstructed $B_d \rightarrow J/\psi K^{0*}$ after $IOpb^{-1}$

Reconstructed $B_s \rightarrow J/\psi \varphi$ after 150pb⁻¹

J/ ψ , φ and K^{0*} invariant masses

2

ATLAS

James Catmore EPS HEP Conference, Krakow, Poland, July 2009

Extracting B_s and B_d mass and lifetime from early data 22

With the earliest data ATLAS will use a fit to simultaneously access the mean mass and lifetimes of the B_s and B_d mesons

$$L = \prod_{i=1}^{N} \left[\frac{n_{sig}}{N} \times p_{sig}(t_i, m_i) + \frac{n_{bckl}}{N} \times p_{bkgl}(t_i, m_i) + \frac{N - n_{sig} - n_{bckl}}{N} \times p_{bkg2}(t_i, m_i) \right]$$

bkgI = prompt background; bkg2 = bb background $p_{sig}, p_{bkgI}, p_{bkg2} = probability density functions modelling lifetime and mass distributions for signal and backgrounds$

Paramatar	B _d →J/ψK ^{0*}	after 10pb ⁻¹	B _s →J/ψφ after 150pb ⁻¹		
Farameter	Simulated value	Fit result + st error	Simulated value	Fit result + st error	
Mean lifetime Г, ps ⁻¹	0.651	0.73 ± 0.07	0.683	0.743 ± 0.051	
Mean mass m, GeV	5.279	5.284 ± 0.006	5.343	5.359 ± 0.006	
Lifetime resolution σ , ps		0.132 ± 0.004		0.152 ± 0.001	
Mass resolution σ_B , GeV		0.054 ± 0.006		0.061 ± 0.006	
n _{sig} /N 0.16		0.155 ± 0.006	0.018	0.031 ± 0.005	
n _{bck1} /N 0.062		0.595 ± 0.017	0.397	0.379 ± 0.006	

Definitions of functions in B_s/B_d likelihood fit

$$L = \prod_{i=1}^{N} \left[\frac{n_{sig}}{N} \times p_{sig}(t_i, m_i) + \frac{n_{bckl}}{N} \times p_{bkgl}(t_i, m_i) + \frac{N - n_{sig} - n_{bckl}}{N} \times p_{bkg2}(t_i, m_i) \right]$$
$$p_{sig}(t_i) = \frac{\int_0^\infty e^{-\Gamma t} \rho(t - t_i) dt}{\int_{-\infty}^\infty \left(\int_0^\infty e^{-\Gamma t} \rho(t - t') dt\right) dt'}$$

23

$$p_{bck2}(t_i) = \frac{\int_0^\infty (\Gamma_1 e^{-\Gamma_1 t} + b_1 \times \Gamma_2 e^{-\Gamma_2 t}) \rho(t - t_i) dt}{\int_{-\infty}^\infty (\int_0^\infty (\Gamma_1 e^{-\Gamma_1 t} + b_1 \times \Gamma_2 e^{-\Gamma_2 t}) \rho(t - t') dt) dt'}$$

cl(c2): linear(quadratic) coefficients in non-prompt background fit

	Parameter	Simulated value	Fit result with statitical error			Input	Fit result with statistical error
:	Γ , ps ⁻¹	0.651	0.73 ± 0.07	:	Γ_s , ps ⁻¹	0.683	0.743 ± 0.051
	m(B), GeV	5.279	5.284 ± 0.006		m(<i>B</i>), GeV	5.343	5.359 ± 0.006
	σ , ps		0.132 ± 0.004	-	σ, ps		0.152 ± 0.001
	σ_m , GeV		0.054 ± 0.006	П	σ_m , GeV		0.061 ± 0.006
R	n_{sig}/N	0.16	0.155 ± 0.015	BS	n_{sig}/N	0.018	0.031 ± 0.005
	n_{bck1}/N	0.062	0.595 ± 0.017		n_{bck1}/N	0.397	0.379 ± 0.006
	b_1		1.08 ± 0.27		b_1		0.023 ± 0.01
	Γ_1, ps^{-1}		0.67 ± 0.05		Γ_1, ps^{-1}		1.35 ± 0.02
	Γ_2, ps^{-1}		2.4 ± 0.3		Γ_2, ps^{-1}		0.44 ± 0.08
	c_1		-2.75 ± 0.28		c_1		-1.44 ± 0.07
ATLAS	<i>c</i> ₂		4.7 ± 1.4	_	c_2		2.14 ± 0.49 ancaster
							UNIVERSTTY
ñ	•	James C	atmore EPS HEP Cor	nferen	ce, Krakow,	Polanc	l, July 2009

Effect of cuts on the signal and background

(a) preselected events
(b) after transverse decay length cuts
(c) after pointing angle cuts
(d) after isolation cuts

25