ALICE TPC
design and performance

Adam Matyja
for the ALICE TPC collaboration
INP PAN Kraków

Outline
- Components
 - ReadOut chambers
 - Drift voltage system
 - Gas system
 - Cooling system
 - DCS
- Calibration
- Performance
- Summary
The ALICE detector
ALICE Time Projection Chamber

General features:
- Diameter × Length: 5 m × 5 m
- Azimuthal angle coverage: 2π
- Pseudo-rapidity interval: $|\eta| < 0.9$
- Readout chambers: 72
- Drift field: 400 V/cm
- Maximum drift time: 92 μs
- Central electrode HV: 100kV

Gas:
- Active volume: 90 m3
- Ne-CO$_2$-N$_2$: 85.7% - 9.5% - 4.8%
- Cold gas - low diffusion
- Non-saturated drift velocity
 \[\Rightarrow \text{temperature stability and homogeneity} \leq 0.1 \text{ K} \]

Data readout:
- Pads (3 types): 557 568
- Samples in time direction: 1000
- Data taking rate:
 - ~ 1kHz for p-p
 - ~ 200 Hz for Pb-Pb
ReadOut Chambers

- 2 sides with 18 sectors
- Sector consists of:
 - Inner chamber (IROC)
 - Outer chamber (OROC)
 ⇒ 72 readout chambers
- Pad readout
 - 3 sizes

No trips → stable operation
Drift voltage system

Provide constant electric field

- Water cooled voltage dividers
 → remove dissipated power
- Leakless underpressure system
- Control of water conductivity

Components

- Resistor rods
- Voltage dividers network
- Resistors rods
Recirculating gas system

- O_2 and H_2O contamination removed by Cu catalyser
- Minimise signal loss (e^- attachment)
- Design goal: < 5 ppm O_2
- Achieved: ~ 1 ppm O_2
- In operation since 2006
Cooling system

Provide temperature stability

- ~ 60 adjustable cooling circuits
- ~ 500 temperature sensors
- Leakless underpressure system
- Thermal screening towards ITS and TRD
- Copper shields of service support wheel
- Cooling of ROC bodies
- Water cooling of FEE in copper envelope (~27 kW)

FEC with its cooling envelope

Temperature outside TPC

Temperature inside TPC

\[\sigma_T \approx 0.1 \text{ K} \]
\[\Delta T_{\text{max}} \approx 0.3 \text{ K} \]

Good agreement with design specifications
Detector Control System

Ensure a safe and correct operation of TPC
- Integrated into Experiment Control System
- Hardware architecture
 - Supervisory layer: user interface
 - Control layer: hub - collect & process information
 - Field layer: electronics to control equipment
- TPC is fully controlled from DCS
Noise measurements

- Noise level improved during commissioning
- Mean noise level:
 - Design goal: 1 ADC count (1000 e)
 - Achieved: 0.7 ADC count (700 e)
- Data volume:
 - zero suppressed (ZS) events: < 70kB
 - non-ZS: ~ 700MB

Calibration

<table>
<thead>
<tr>
<th>Time</th>
<th>Clean room</th>
<th>Underground</th>
<th>Underground</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current noise
Laser system

- 336 laser beams
- Used for:
 - $E \times B$ effect
 - Drift velocity measurements
 - Alignment
Correction map from laser tracks

- Measure $\Delta r \phi$
- For each laser track
- For several magnetic field settings

$\Delta r \phi = 7 \text{ mm}$

for longest drift and nominal field
Drift velocity measurements

- \(\nu_d = \nu_d(E, B, T, P, C_{CO2}, C_{N2}) \)
- Crucial for track matching with other detectors
- How to obtain drift velocity correction factor:
 - Match laser tracks and mirror positions
 - Match TPC and ITS tracks
 - Match tracks from two halves of TPC
 - Drift velocity monitor
- Required accuracy: \(10^{-4} \Rightarrow \text{update every 1h} \)

- Central electrode monitor top-bottom arrival time offset caused by T and P gradients
Gain calibration using ^{83}Kr

Determine gain for each pad

- Inject radioactive ^{83}Kr
- Fit the main peak (41.6 keV)
- 3 different HV settings (gains)
- High statistics: several 10^8 Kr events
- Accuracy of peak position: < 1% (design: 1.5%)
- Repeated after electronic maintenance or every year

Resolution of main peak:
- 4.0 % for IROCs
- 4.3 % for OROCs

Relative gain variation
C-side
Momentum resolution

- Cosmic muon tracks treated independently in two halves of TPC
- Comparison of p_T at vertex gives resolution
- Statistics: $\sim 5 \times 10^6$ events

- Design goal: 4.5 % @ 10 GeV
- Achieved: 6.5 % @ 10 GeV
 ~ 1 % below 1 GeV
Space point resolution

- 300 - 800 µm in $r\phi$
 - for small inclination angles (high momentum tracks)
- Good agreement with simulations
Performance

dE/dx resolution

Allows particle identification up to 50 GeV/c
- Statistics: 7×10^6 cosmic tracks in 2008
- Design goal: 5.5%
- Measured: < 5.7%
 → close to design value
Summary

- ALICE TPC works stably
- Calibration done → working on improvements
- Very good performance, close to specifications
- Ready for physics since summer 2008
- We are looking forward to the beam
ALICE TPC collaboration

Dieter Roehrich1, Haavard Helstrup1, Dag Toppe Larsen1, Dominik Fehlker1, Brano Sitar2, Miro Pikna2, Martin Siska2, Rudolf Janik2, Peter Strmen2, Imrich Szarka2, Luciano Musa3, Christian Lippmann3, Magnus Mager3, Attiq Ur Rehman3, Stefan Rossegger3, Borge S. Nielsen4, Carsten Soegaard4, Helmut Oeschler5, Alexander Kalweit5, Harald Appelshaeuser6, Rainer Renfordt6, Peter Braun-Munzinger7, Hans-Rudolf Schmidt7, Danilo Vranic7, Chilo Garabatos7, Ulrich Frankenfeld7, Marian Ivanov7, Yiota Foka7, Johanna Stachel8, Peter Glassel8, Jens Wiechula8, Hans-Ake Gustafsson9, Peter Christiansen9, Anders Oskarsson9, Philippe Gros9, Alexandru Florin Dobrin9, Marek Kowalski10, Adam Matyja10

1. Department of Physics and Technology, University of Bergen, Bergen, Norway
2. Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
3. European Organization for Nuclear Research (CERN), Geneva
4. Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
5. Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
6. Institut für Kernphysik, Johann-Wolfgang-Goethe Universität Frankfurt, Frankfurt, Germany
7. Gesellschaft für Schwerionenforschung mbH (GSI), Darmstadt, Germany
8. Physikalisches Institut, Ruprecht-Katls-Universität Heidelberg, Heidelberg, Germany
9. Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
10. The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

16 July 2009, Kraków
BACKUP
BACKUP

Relative dEdx resolution

\[\frac{\sigma(dE/dx)}{2} \]

\[N_{cl} \]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 20 40 60 80 100 120 140