

ALICE TPC design and performance Adam Matyja

for the ALICE TPC collaboration

INP PAN Kraków

Outline

- Components
 - ReadOut chambers
 - Drift voltage system
 - Gas system
 - Cooling system
 - DCS
- Calibration
- Performance
- Summary

16 July 2009, Kraków

The ALICE detector

ALICE Time Projection Chamber

- Data readout:
 - Pads (3 types): 557 568
 - Samples in time direction: 1000
 - Data taking rate:
 - ~ 1kHz for p-p
 - ~ 200 Hz for Pb-Pb

EPS-HEP 2009 Adam Matyja

- General features:
 - $\hfill\square$ Diameter \times Length : 5 m \times 5 m
 - \Box Azimuthal angle coverage: 2π
 - **D** Pseudo-rapidity interval: $|\eta| < 0.9$
 - Readout chambers: 72
 - Drift field: 400 V/cm
 - \Box Maximum drift time: 92 µs
 - Central electrode HV: 100kV

Gas:

- □ Active volume: 90 m³
- □ Ne-CO₂-N₂: 85.7% 9.5% 4.8%
- Cold gas low diffusion
- Non-saturated drift velocity
 - \Rightarrow temperature stability and homogeneity \leq 0.1 K

ReadOut Chambers

- 2 sides with 18 sectors
- Sector consists of:
 - □ Inner chamber (IROC) —
 - □ Outer chamber (OROC)
 - \Rightarrow 72 readout chambers
- Pad readout

3 sizes

No trips \rightarrow stable operation

16 July 2009, Kraków

Drift voltage system

Provide constant electric field

- Water cooled voltage dividers
 → remove dissipated power
- Leakless underpressure system
- Control of water conductivity

Voltage dividers network

Resistor rods

Recirculating gas system

- O₂ and H₂O contamination removed by Cu catalyser
- Minimise signal loss (e⁻ attachment)
- Design goal: < 5 ppm O₂
- Achieved: ~ 1 ppm O₂
- In operation since 2006

Cooling system

Provide temperature stability

- ~ 60 adjustable cooling circuits
- ~ 500 temperature sensors
- Leakless underpressure system
- Thermal screening towards ITS and TRD
- Copper shields of service support wheel
- Cooling of ROC bodies
- Water cooling of FEE in copper envelope (~27 kW)

FEC with its cooling envelope

16 July 2009, Kraków

Good agreement with design specifications

Temperature inside TPC

Detector Control System

Ensure a safe and correct operation of TPC

- Integrated into Experiment Control System
- Hardware architecture
 - □ Supervisory layer: user interface
 - □ Control layer: hub collect & process information
 - □ Field layer: electronics to control equipment
- TPC is fully controlled from DCS

Noise measurements

- Mean noise level:
 - Design goal: 1 ADC count (1000 e)
 - □ Achieved: 0.7 ADC count (700 e)
- Data volume:
 - □ zero suppresed (ZS) events: < 70kB

non-ZS: ~ 700MB

Laser system

336 laser beams

Used for:

- \Box E × B effect
- Drift velocity measurements
- Alignment

Reconstructed laser tracks

16 July 2009, Kraków

Laser system ← Calibration

E×B effect

Correction map from laser tracks

- Measure $\Delta r \phi$
- For each laser track
- For several magnetic field settings

 $\Delta r \phi = 7 mm$

for longest drift and nominal field

RAW

12/10

Time

Drift velocity measurements

- $v_d = v_d(E, B, T, P, C_{CO2}, C_{N2})$
- Crucial for track matching with other detectors 0.01
- How to obtain drift velocity correction factor:
 - Match laser tracks and mirror positions
 - Match TPC and ITS tracks
 - Match tracks from two halves of TPC
 - Drift velocity monitor
- Required accuracy: $10^{-4} \Rightarrow$ update every 1h
- Central electrode monitor top-bottom arrival time offset caused by T and P gradients
 Central electrode gradients

0.005

-0.005

-0.01

-0.015

28/09

05/10

Gain calibration using ⁸³Kr

Determine gain for each pad

- Inject radioactive ⁸³Kr
- Fit the main peak (41.6 keV)
- 3 different HV settings (gains)
- High statistics: several 10⁸ Kr events
- Accuracy of peak position: < 1% (design: 1.5%)
- Repeated after electronic maintenance or every year

Relative gain variation C-side

16 July 2009, Kraków

Performance

Momentum resolution

- Cosmic muon tracks treated independently in two halves of TPC
- Comparison of p_T at vertex gives resolution
- Statistics: ~ 5 × 10⁶ events
- Design goal: 4.5 % @ 10 GeV
- Achieved: 6.5 % @ 10 GeV

~ 1 % below 1 GeV

Performance

Space point resolution

- **300 800 μm in r**φ
 - □ for small inclination angles (high momentum tracks)
- Good agreement with simulations

Performance

dE/dx resolution

Allows particle identification up to 50 GeV/c

- Statistics: 7×10⁶ cosmic tracks in 2008
- Design goal: 5.5 %
- Measured: < 5.7 %</p>
 - \rightarrow close to design value

Summary

ALICE TPC works stably

- Calibration done \rightarrow working on improvements
- Very good performance, close to specifications
- Ready for physics since summer 2008
- We are looking forward to the beam

ALICE TPC collaboration

Dieter Roehrich¹, Haavard Helstrup¹, Dag Toppe Larsen¹, Dominik Fehlker¹, Brano Sitar², Miro Pikna², Martin Siska², Rudolf Janik², Peter Strmen², Imrich Szarka², Luciano Musa³, Christian Lippmann³, Magnus Mager³, Attiq Ur Rehman³, Stefan Rossegger³, Borge S. Nielsen⁴, Carsten Soegaard⁴, Helmut Oeschler⁵, Alexander Kalweit⁵, Harald Appelshaeuser⁶, Rainer Renfordt⁶, Peter Braun-Munzinger⁷, Hans-Rudolf Schmidt⁷, Danilo Vranic⁷, Chilo Garabatos⁷, Ulrich Frankenfeld⁷, Marian Ivanov⁷, Yiota Foka⁷, Johanna Stachel⁸, Peter Glassel⁸, Jens Wiechula⁸, Hans-Ake Gustafsson⁹, Peter Christiansen⁹, Anders Oskarsson⁹, Philippe Gros⁹, Alexandru Florin Dobrin⁹, Marek Kowalski¹⁰, Adam Matyja¹⁰

- 1. Department of Physics and Technology, University of Bergen, Bergen, Norway
- 2. Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
- 3. European Organization for Nuclear Research (CERN), Geneva
- 4. Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- 5. Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
- 6. Institut für Kernphysik, Johann-Wolfgang-Goethe Universität Frankfurt, Frankfurt, Germany
- 7. Gesellschaft für Schwerionenforschung mbH (GSI), Darmstadt, Germany
- 8. Physikalisches Institut, Ruprecht-Katls-Universität Heidelberg, Heidelberg, Germany
- 9. Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
- 10. The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

BACKUP

BACKUP

