

Double-Chooz Neutrino Experiment

Carmen Palomares (Ciemat, Spain) for Double-Chooz Collaboration

- Absolute mass scale
- CP violation effects
- CP violation effect
- Size of **0**₁₃

The main goal of upcoming experiments is the determination of θ_{13}

Krakow July 17th 2009 C. Palomares Double Chooz Experiment neutrino

target

low activity gravel shielding

The main limit comes from CHOOZ reactor experiment '97

Experimental methods to measure θ_{13}

Long-Baseline Accelerators: Appearance (vµ→ve) Oscillation probability complicated and dependent not only on θ_{13} but also: CP violation parameter, sign of Δm_{31} , size of sin² θ_{23}

Backgrounds

Accidental:

- e⁺-like signal: radioactivity from materials and surrounding rock.
- n signal: n from cosmic µ spallation, thermalized in detector and captured on Gd.

Or another radioactivity event

Correlated:

- fast n (by cosmic μ) recoil on p (low energy) and captured on Gd
- long-lived (⁹Li, ⁸He) β-decaying isotopes induced by μ

Double Chooz Concept

To look for non-zero values of Θ_{13} Beyond the previous systematic limitations:

- 1. Two detectors to reduce uncertainties of the reactor flux
- 2. Identical detectors to reduce errors due to detector acceptance

Improving CHOOZ

CHOOZ: $R=N_{meas}/N_{exp} = 1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (sys)

Statistical error

	CHOOZ	Double Chooz
Target volume	5.55 m3	10.3 m3
Data taking period	Few months	3-5 years
Event rate	2700	Chooz-far 60000/3y
Statistical error	2.8%	0.5%

Systematic error

	CHOOZ	Double Chooz
Reactor uncertainties v flux and reactor power	2.1%	
Number of protons	0.8%	0.2%
Detector Efficiency	1.5%	0.5%

Improving CHOOZ

Background

 Single e⁺-like reduced: PMT very low radioactivity glass PMT is not in contact with liquid scintillator (PMT single rate CHOOZ: ~60 Hz. Double-Chooz ~1.5 Hz) Detector shielded by 15 cm iron
 Neutron rate reduced by using a more efficient cosmic muon veto system

Detector Performance

Calibration relative detection efficiency between near and far detector should be known with an uncertainty <0.5%
 Detector stability liquid scintillator stability tested over 3 years

Expected Sensitivity

The Double Chooz Collaboration

Spokesman: Hervé de Kerret (APC)

France: APC Paris, CEA/Dapnia Saclay, Subatech Nantes, Strasburg Germany: Aachen, MPIK Heidelberg, TU München, EKU Tübingen, Hamburg **Spain: CIEMAT Madrid**

Japan: HIT, Kobe, Niigata, TGU, TIT, TMU, Tohoku

Russia: RAS, RRC Kurchatov Institute

USA: Alabama, ANL, Chicago, Columbia, Drexel, Illinois, Kansas, LLNL, LSU, Notre

Dame, Sandia, Tennessee, UCD

Krakow July 17th 2009

The Double Chooz Laboratories

After refurbishment of the pit, the detector construction started in the second half of 2008.

Shield of 15 cm demagnetized iron

Krakow July 17th 2009

Schedule

- Far Detector will be finished at the end of 2009 Inner Veto and buffer PMT installation in the upper lid Electronics
- Filling and commissioning beginning of 2010
- Outer veto will be installed in April 2010 (not indispensable for running)

From April 2010 a 4 months stop of one of the reactors (possibility to get a stop of both reactors during some weeks)

Near Detector

May 20th the **agreement for the Near laboratory construction** has been signed.

The agreement includes the region Champagne-Ardennes, EDF and French agencies.

Schedule

- Geological study done (February) -
- Tender process for construction
- Constructed at the end of 2010

Ð

Summary

- Double Chooz will be the first of a new generation of neutrino experiments using identical detectors at different distances from a reactor to measure Θ₁₃
- First quarter of 2010 start of data taking with far detector: current limit sin²2Θ₁₃<0.11 @ 90% CL in few weeks and <0.06 running 1 year
- 2011 start of data taking with both detectors
- Detector stability will allow a long data taking period
- Three years running both detectors: sin²2O₁₃<0.03 @ 90% CL</p>

Neutrino oscillations: present status

arXiv:0808.2016

globa

atmospheric

0.75

0.5

 $\sin^2 \theta_{23}$

Θ_{13} Determination

A non-zero value for θ_{13} ?

- Solar + KamLAND data lead to a hint for non-zero θ_{13} (1.5 σ)
- Therefore, the CHOOZ + atmospheric data give a smaller value.

At present no significant hint for a non-zero θ_{13}

Θ_{13} Determination

Θ_{13} Determination

Reactor experiments proposals

NUBLE

Reactor and antineutrino spectrum

Double-Chooz: Systematic errors

		Chooz		Double-Chooz
Reactor- induced	ν flux and σ	1.9 %	<0.1 %	
	Reactor power	0.7 %	<0.1 %	Two ''identical'' detectors,
	Energy per fission	0.6 %	<0.1 %	LOW DKg
Detector - induced	Solid angle	0.3 %	<0.1 %	Distance measured @ 10 cm + monitor core barycenter
	Target Mass	0.3 %	0.2 %	Same weight sensor for both det.
	Density	0.3 %	<0.1 %	Accurate T control (near/far)
	H/C ratio & Gd concentration	1.2 %	<0.2%	Same scintillator batch + Stability
	Spatial effects	1.0 %	<0.1 %	"identical" Target geometry & LS
	Live time	few %	0.25 %	Measured with several methods
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %	
Total		2.7 %	< 0.6 %	(Total ~0.45% without contigency)

Background

No Veto System

Detector	Site		Background				
			Accidental		Correlated		
			Materials	PMTs	Fast n	μ -Capture	9 Li
Double Chooz		Rate (d^{-1})	0.5 ± 0.3	1.5 ± 0.8	2.0 ± 2.0	28	1.0 ± 0.5
$(69 \nu/d)$	Far	bkg/ν	0.7%	2.2%	(2.9%)	40%	1.4%
Double Chooz		Rate (d^{-1})	5 ± 3	17 ± 9	9.1 ± 9.1	266	9 ± 5
(500 v / d)	Near	${ m bkg}/ u$	0.5%	1.7%	0.8%	26%	0.9%

Inner and Outer Veto

Detector	Site	Background					
			Accidental		Correlated		
			Materials	\mathbf{PMTs}	Fast n	$\mu\text{-Capture}$	⁹ Li
Double Chooz		Rate (d^{-1})	0.1 ± 0.1	0.3 ± 0.2	0.11 ± 0.11	< 0.1	1.0 ± 0.5
$(69 \nu/d)$	Far	${ m bkg}/ u$	0.1%	0.4%	(0.2%)	< 0.1%	1.4%
		systematics	< 0.1%	< 0.1%	0.2%	$<\!0.1\%$	0.7%
Double Chooz		Rate (d^{-1})	0.5 ± 0.3	1.7 ± 0.9	0.15 ± 0.15	0.4	9 ± 5
(500 v / d)	Near	bkg/ν	< 0.1%	0.2%	< 0.1%	< 0.1%	0.9%
(000 17 0)		systematics	${<}0.1\%$	< 0.1%	< 0.1%	< 0.1%	0.5%

Calibration System

Deployment of radioactive sources:

Articulated arm (Target) Guide tubes (Gamma-catcher) Buffer tubes Z-axis system Light Injection: LED systems IV and buffer Laser (Z-axis)

Target and G-Catcher

Three targets finished

Cylinder glued Lid construction: gluing support and filling tube

Target and G-Catcher

Gamma catcher construction divided between Néotec site and Chooz power plant to avoid heavy transportation:

Néotec: Cylinders parts constructed Lids constructed and glued

Chooz: gluing of the cylinder gluing of cylinder, lids and filling tubes