

Exclusive B \rightarrow **X**_c ℓ v **Decays at BaBar** and determination of |V_{cb}|

On Behalf of the BaBar Collaboration Marcello Rotondo (INFN Padova)

I N F N

Outlines

- $|V_{cb}|$ and Form Factors from $B \rightarrow D\ell v$ decays
 - Tagged $B \rightarrow D\ell v$
 - Untagged global fit $B \rightarrow DX \ell v$
- Excited states: $B \rightarrow D^{**} \ell v$
 - Tagged $B \rightarrow D^{**}\ell v$
- $B \rightarrow D(*) \tau v$ decays and NP
- Conclusions

Extracting $|V_{cb}|$ with $B \rightarrow D\ell \nu$

- $|V_{cb}|$ from $B \rightarrow D^* \ell v$ differ by ~2.5 σ from inclusive determination
 - Cross check with $B \rightarrow D\ell v$
- Form Factor normalization in $B \rightarrow D\ell v$ can be computed with precision comparable with D* from LQCD

Extracting $|V_{cb}|$ with $B \rightarrow D\ell v$

Helicity suppression at w~1 require extrapolation to w=1

Extracting $|V_{cb}|$ with $B \rightarrow D\ell v$

HQET expansion of Form Factor:

$$w = \frac{m_B^2 + m_D^2 - q}{2m_B m_D}$$

9

$$\frac{d\Gamma}{dw}(D) = \frac{G_F^2}{48\pi^3} (m_B + m_D)^2 m_D^3 (w^2 - 1)^{3/2} |V_{cb}|^2 \mathcal{G}^2(w)$$

Caprini et al. parameterization (CLN): Nucl. Phys. B 530 (1998), 153

$$\mathcal{G}(w) = \mathcal{G}(1)[1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3]$$
$$z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

G(w) depends only on a single parameter: ρ^2 , the slope of G(w) at w=1 ρ^2 is fitted together with $G(1)/V_{cb}$

Note: similar expressions for $B \rightarrow D^* \ell v$ where $\rho_{D^*}^2$ fitted together with $F(1)|V_{cb}|$

Tagged $B^{+/0} \rightarrow D^{0/+} \ell \nu$

- B meson fully reconstucted in about 1000 adronic final states
- Reconstruct $B \rightarrow D\ell v$ in the recoil
 - Reduced background ([↑]S/N)
 - Fully exploit kinematic constraints ([↑]resolution)
 - Avoid neutrino reconstruction
- Identify semileptonic B decays through the missing mass squared in the event

$$m_{\text{miss}}^2 = [p(\Upsilon(4S)) - p(B_{\text{tag}}) - p(D) - p(\ell)]^2$$

- Binned maximum likelihood fit, MC shapes to different components:
 - Signal
 - Feed-up(down), continuum, BB bkg, fake leptons

- 9 final states for the D0
- 7 final states for the D+

417 fb⁻¹

0904.4063[hep-exi

submitted to PRL

Tagged $B^{+/0} \rightarrow D^{0/+} \ell \nu$: results

- Extract w spectrum by fitting m_{miss}^2 in 10 w bins (w resolution < 0.01)
- χ^2 fit to w spectrum to measure $G(1)/V_{cb}/A$ and ρ^2 , reweighting MC template

Untagged $B^{+/0} \rightarrow D^{0/+} \ell \nu X$

- Select $B \rightarrow D^0 \ell v X$ and $B \rightarrow D^+ \ell v X$ with $p_{\ell} > 1.2 GeV/c$
- Get D/D* rates with binned 3-D fit to p_{f} , p_{D} , $cos\theta_{BY}$

- No π_{soft} reco from D^*
 - \uparrow signal, \downarrow syst.
- Momentum of the D is correlated to w
 - The analysis has sensitivity to ρ_D^2 , $\rho_{D^*}^2$ and $|V_{cb}|$
- Fix D** rate to HFAG, and assume BR(B→D(*)ππν)=1.1± 1.1%

EPS2009 16 July 2009

M.Rotondo

PRD79,012002 (2009)

 $D^0 \rightarrow K\pi$

 $D^{\scriptscriptstyle +} \to K \pi \pi$

Untagged $B^{+/0} \rightarrow D^{0/+} \ell \nu X$: Results

Result of the $e+\mu+D^0+D^+$ combined fit

Relate BR(B⁰) to BR(B⁺) using lifetime ratio

Parameters	Combined result
ρ_D^2	$1.20 \pm 0.04 \pm 0.07$
$ ho_{D^*}^2$	$1.22 \pm 0.02 \pm 0.07$
$\mathcal{B}(D^0\ellar u)(\%)$	$2.34 \pm 0.03 \pm 0.13$
$\mathcal{B}(D^{*0}\ellar{ u})(\%)$	$5.40 \pm 0.02 \pm 0.21$
χ^2 /n.d.f. (probability)	2.2/4 (0.71)

 $\begin{array}{ll} D & G(1)/V_{cb} = (43.1 \pm 0.8 \pm 2.3) \times 10^{-3} & 5.5\% \text{ mostly systematics} \\ D^* & F(1)/V_{cb} = (35.9 \pm 0.2 \pm 1.2) \times 10^{-3} & 3.3\% \end{array}$

- Good consistency with existing measurements, with comparable precision
- Theory validation:
 - $G(1)/F(1)=1.20 \pm 0.09$: in agreement with lattice computation (1.17 ± 0.04)
 - Slope difference $\rho_D^2 \rho_{D^*}^2$ consistent with 0 as expected

Babar $B \rightarrow D\ell v$ average and World Average

Combining tagged $B \rightarrow D\ell v$ with results from untagged $B \rightarrow DX\ell v$ global fit

$$\begin{split} G(1)|V_{cb}| &= (42.4 \pm 0.7 \pm 1.6) \times 10^{-3} \\ \rho^2 &= 1.18 \pm 0.04 \pm 0.04 \\ Br(B^0 \rightarrow D\ell v) &= (2.16 \pm 0.08)\% \end{split}$$
 Using the Okamoto et al. (FNAL05) LQCD $\mathcal{G}(1) &= 1.074 \pm 0.018 \pm 0.016 \\ |V_{cb}| &= (39.2 \pm 1.6 \pm 0.9_G) \times 10^{-3} \end{split}$

Compatible with $B \rightarrow D^*$ and inclusive determinations: - HFAG+FNAL08 $|V_{cb}| = (38.1 \pm 0.5 \pm 1.0_F) \times 10^3$ - Global Fit (kin scheme) $|V_{cb}| = (41.5 \pm 0.7) \times 10^3$ Recent BaBar measurements have given a dramatic improvement: total error on WA G(1) $|V_{cb}|$ reduced to 4% !

Form factor normalization in $B \rightarrow D\ell \nu$

- Normalization of the FF at w=1 available in quenched and unquenched (2+1) calculations
- Computation of G(w) at w>1 start to be available Tantalo et al. (PLB655,45 (2007)) with quenched approximation, and more recently T. Mannel et al. (arXiv:0809.0222) using LCSR

W	G(w)		
1.00	1.074±0.024 unquenched	Not published	
1.00	1.058±0.020 quenched	PRD61,014502 (2005)	
			Calculation at finite momentum
1.00	1.026±0.017 quenched	PLB655, 45 2007	transfer, where data are
1.03	1.001±0.019 "	"	available, allows to extract
1.05	0.987±0.015 "	"	<i>V_{cb}</i> / without additional model
1.10	0.943±0.011 "	"	dependence extrapolation
1.20	0.853±0.021 "	"	
w _{max}	0.61±0.16 LCSR	arXiv.0809.0222 (2008)	

Note: unknown further systematics due to the quenched approximation

EPS2009 16 July 2009

Tagged $B \rightarrow D\ell v$ results at w>1

0904.4063[hep-ex] submitted to PRL

Reduce the model dependence determining $G(w')|V_{cb}|$ from a fit in a limited region of phase-space

- Experimental error interpolating 4 bins around w=1.2 is competitive with the extrapolation to w=1 using the full phase-space
- We expect lattice community provide un-quenched (2+1) computation of the FF at w=1 and at w>1

Higher mass states in SL decays

- Studies of these final states are crucial:
 - Historical puzzle: sum of known exclusive states misses inclusive semileptonic BR
 - Need detailed understanding of $B \rightarrow D/D^*/D^{**l}v$ spectra to fix background for $|V_{ub}|$ measurements and $B \rightarrow D/D^*\tau v$ studies (next slides)

Higher mass states: $B \rightarrow D^{**} \ell v$

- D**: short name for D(*)nπ (n>0) final states, includes
 - Narrow states (D_1, D_2^*) : well established
 - Broad States (D_0^*, D_1')
 - Non resonant ($D^*n\pi \& Dn\pi$)
- BaBar: Narrow states with untagged analysis

0808.333[hep-ex] submitted to PRL

GeV/c²

Four D* helicity bins to split D₁ from D₂* Fit together with D₂* $\rightarrow D\pi$

Tagged B \rightarrow D^{**} $\ell \nu$

 Use the B_{reco} sample to reduce background, results are mainly statistical limited

Decay Mode	Yield	$\epsilon_{\rm sig}(imes 10^{-4})$	$\mathcal{B}(\bar{B} \to D^{**}\ell^- \bar{\nu}_\ell) \times \mathcal{B}(D^{**} \to D^{(*)}\pi^{\pm})\%$
$B^- \rightarrow D^0_1 \ell^- \bar{\nu}_\ell$	165 ± 18	1.24	$0.29 \pm 0.03 \pm 0.03$
$B^- \rightarrow D_2^{*0} \ell^- \bar{\nu}_\ell$	97 ± 16	1.44	$0.15 \pm 0.02 \pm 0.02$
$B^- \rightarrow D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	142 ± 21	1.13	$0.27 \pm 0.04 \pm 0.05$
$B^- \rightarrow D_0^{*0} \ell^- \bar{\nu}_\ell$	137 ± 26	1.15	$0.26 \pm 0.05 \pm 0.04$
$\bar{B}^0 \rightarrow D_1^+ \ell^- \bar{\nu}_\ell$	88 ± 14	0.70	$0.27 \pm 0.04 \pm 0.03$
$\bar{B}^0 \to D_2^{*+} \ell^- \bar{\nu}_\ell$	29 ± 13	0.91	$0.07 \pm 0.03 \pm 0.02 \ (< 0.12@90\% CL)$
$\bar{B}^0 \longrightarrow D_1^{\prime +} \ell^- \bar{\nu}_\ell$	86 ± 18	0.60	$0.31 \pm 0.07 \pm 0.05$
$\bar{B}^0 \longrightarrow D_0^{*+} \ell^- \bar{\nu}_\ell$	142 ± 26	0.70	$0.44 \pm 0.08 \pm 0.06$

- Narrow states (D₁, D₂*) in agreement with existing measurements (D0, Belle and BaBar)
- Wide found to be large in contrast to theory (hep-ph/0512270)
- In the past assume single pion saturates D^{**} decays: but D(^{*})ππ are possible and start to be measured (could solve the problem with the missing decay modes)
- D₁' not observed by Belle, but in agreement with Delphi

PRL,101, 261802 (2008)

$B \rightarrow D(^*)\tau \nu$

$B \rightarrow D(^*)\tau v$: motivation

- Similar to $B \rightarrow \tau v$, but:
 - From annihilation to the exchange
 - From V_{ub} to V_{cb}
 - Not a rare decay, from LEP
 - Br(b→ cτv)=2.48 ± 0.26%
- Complications, lepton mass:
 - 2 form factor for the D, 4 for the D^*
 - But HQET relates the extra FF to the well measured FF in light leptons
- BaBar result **PRL100,021801(2008)**
- More analysis details in:
 - PRD79,092002(2009)

- Use the hadronic $B_{tag} \rightarrow D^{(*)}Y$
 - Reduce combinatoric
- Reconstruct 4 channels:
 - D^0, D^{*0}, D^+, D^{*+}
- Only $\tau \rightarrow \ell v v$ (e o μ): 3 v in the final state

$B \rightarrow D(^*)\tau v$: fit results

• Simultaneous 2D unbinned fit of missing mass m_{miss}^2 and P_{ℓ} to 4 signal sample and the D^{**} control samples

Most dangerous bkg from $B \rightarrow D^{**} \ell v$

Select $D(*)\pi^0$ candidates and fitted together with the signal sample to reduce the sensitivity to D^{**} modeling

 $D^* \tau \nu$

 $D\tau\nu$

 $D^*\ell\nu$

 $D\ell\nu$

 $D^{**}\ell\nu$

Comb.

PRL100,021801(2008) PRD79,092002(2009)

209fb⁻¹

EPS2009 16 July 2009

$B \rightarrow D(^*)\tau v$: results

Mo	de	$N_{ m sig}$	$N_{ m norm}$	$(\Delta R/R)_{\rm fit}$	$(\Delta R/R)_{\varepsilon}$	R	В	$\sigma_{ m tot}$
				[%]	[%]	[%]	[%]	$(\sigma_{\rm stat})$
B^-	$\rightarrow D^0 \tau^- \overline{\nu}_{\tau}$	35.6 ± 19.4	347.9 ± 23.1	15.5	1.6	$31.4 \pm 17.0 \pm 4.9$	$0.67 {\pm} 0.37 {\pm} 0.11 {\pm} 0.07$	1.8 (1.8)
B^{-}	$\rightarrow D^{*0} \tau^- \overline{\nu}_{\tau}$	92.2 ± 19.6	$1629.9 {\pm} 63.6$	9.7	1.5	$34.6\pm\ 7.3{\pm}3.4$	$2.25{\pm}0.48{\pm}0.22{\pm}0.17$	5.3 (5.8)
\overline{B}^{0}	$\rightarrow D^+ \tau^- \overline{\nu}_{\tau}$	23.3 ± 7.8	150.2 ± 13.3	13.9	1.8	$48.9{\pm}16.5{\pm}6.9$	$1.04{\pm}0.35{\pm}0.15{\pm}0.10$	3.3 (3.6)
\overline{B}^{0}	$\rightarrow D^{*+} \tau^- \overline{\nu}_{\tau}$	15.5 ± 7.2	482.3 ± 25.5	3.6	1.4	$20.7{\pm}~9.5{\pm}0.8$	$1.11{\pm}0.51{\pm}0.04{\pm}0.04$	2.7 (2.7)
В	$\rightarrow D\tau^-\overline{\nu}_{\tau}$	66.9 ± 18.9	497.8 ± 26.4	12.4	1.4	$41.6 {\pm} 11.7 {\pm} 5.2$	$0.86{\pm}0.24{\pm}0.11{\pm}0.06$	3.6 (4.0)
В	$\rightarrow D^* \tau^- \overline{\nu}_{\tau}$	101.4 ± 19.1	2111.5 ± 68.1	5.8	1.3	$29.7\pm 5.6\pm 1.8$	$1.62{\pm}0.31{\pm}0.10{\pm}0.05$	6.2(6.5)

- Results compatible with Belle latest results
- Statistically limited
- Standard Model predictions, Chen and Geng, JHEP 0610,053 (2006):
 - $B \rightarrow D\tau v \sim 0.69\%$
 - $B \rightarrow D^* \tau v \sim 1.41\%$

Conclusions

- BaBar B → Dℓv analyses reach the precise measurements era: |V_{cb}| = (39.2 ± 1.6 ± 0.9_{FF})x10⁻³
 - compatible with both the inclusive and the exclusive with the D*: (D* incl) differ by 2.5σ, time to worry?
 - expect Lattice community put efforts to compute unquenched FF for $B \rightarrow D\ell v$: It is important to go further the zero-recoil regime.
- Heavy final states studied in SL decays:
 - Still open puzzles, further investigation of SL decays are required and multi-pion
 D** final states states are the possible missing part: more data are needed
- $B \rightarrow D(*)\tau v$ are promising channels to test NP effects
 - With present data exclusion region competitive with $B \rightarrow \tau v$
 - Improvements possible also using the data already collected by BaBar (and Belle)

STOP HERE

BACKUP SLIDES

EPS2009 16 July 2009

Tagged $B \rightarrow D\ell v$: systematics

• Tracking efficiency

- Neutral efficiency
- PID & fake rate
- Radiative Corrections
- Cascade B decay subtraction
- D/D*/D** Form Factor and D** composition
- D daughter branching fraction
- Uncertainty on normalization
- Difference in B_{reco} selection between exclusive and inclusive reconstruction
- Fit technique
 - MC shapes, w binning, background yield

	Systematic uncertainty on $ V_{cb} $ and ρ^2						
	$D^0\ell^-$	$\bar{\nu}_{\ell}$	$D^+\ell^-$	$\bar{\nu}_{\ell}$	$D\ell^{-1}$	$\bar{\nu}_{\ell}$	
	$ V_{cb} (\%)$	$ ho^2$	$ V_{cb} (\%)$	$ ho^2$	$ V_{cb} (\%)$	$ ho^2$	
Tracking efficiency	0.5	0.008	1.1	0.003	0.7	0.004	
Neutral reconstruction	1.	0.003	0.8	0.006	0.9	0.004	
Lepton ID	1.0	0.009	0.9	0.009	0.95	0.009	
PHOTOS	0.13	0.005	0.10	0.005	0.12	0.005	
Cascade $\overline{B} \to X \to \ell^-$ decay background	0.6	-	1.0	-	0.75	-	
$\overline{B} - B^-$ cross-feed	0.24	0.003	0.24	0.003	0.24	0.003	
$\overline{B} \to D^* \ell^- \bar{\nu}_\ell$ Form factors	0.56	0.008	0.20	0.003	0.38	0.006	
$\overline{B} \to D^{**} \ell^- \bar{\nu}_\ell$ Form factors	0.24	0.007	0.34	0.006	0.29	0.007	
D branching fractions	1.0	-	1.35	-	1.12	-	
$\mathcal{B}(\overline{B} \to D^{**}\ell^- \bar{\nu}_\ell)$	1.18	0.023	0.96	0.011	1.08	0.019	
$\mathcal{B}(\overline{B} \to X \ell^- \bar{\nu}_\ell)$	0.95	-	0.95	-	0.85	-	
$B_{\rm tag}$ selection	1.1	0.021	1.8	0.036	1.5	0.028	
$\overline{B} \to X \ell^- \bar{\nu}_\ell$ yield	0.7	-	1.1	-	0.85	-	
$\overline{B} \to D \ell^- \bar{\nu}_\ell$ yield	1.27	0.018	1.06	0.027	1.25	0.020	
Total systematic error	3.1	0.04	3.6	0.05	3.3	0.04	

Untagged $B \rightarrow XD\ell\nu$: systematics

			1	Electron sa	mple					Muon sa	mple	
Item	ρ_D^2	$\rho_{D^*}^2$	$\mathcal{B}(D\ell\bar\nu)$	$\mathcal{B}(D^*\ell\bar\nu)$	$\tilde{G}(1) V_{cb} $	$\mathcal{F}(1) V_{cb} $	ρ_D^2	$\rho_{D^*}^2$	$\mathcal{B}(D\ell\bar\nu)$	$\mathcal{B}(D^*\ell\bar\nu)$	$\tilde{G}(1) V_{cb} $	$\mathcal{F}(1) V_{cb} $
R'_1	0.44	2.74	0.71	-0.38	0.60	0.71	0.50	2.67	0.74	-0.40	0.63	0.70
R_2^i	-0.40	1.02	-0.18	0.30	-0.32	0.49	-0.45	0.96	-0.19	0.30	-0.33	0.48
D ^{**} slope	-1.42	-2.52	-0.07	-0.09	-0.82	-0.87	-1.42	-2.58	-0.10	-0.10	-0.77	-0.92
D** FF approximation	-0.87	0.33	-0.12	0.19	-0.54	0.20	-0.99	0.59	-0.12	0.21	-0.59	0.30
$\mathcal{B}(B^- \to D^{(*)} \pi \ell \bar{\nu})$	0.28	-0.27	-0.22	-0.80	0.04	-0.49	0.59	-0.32	-0.13	-0.86	0.24	-0.54
$f_{D_{2}^{*}/D_{1}}$	-0.39	0.16	-0.38	0.16	-0.41	0.13	-0.50	0.17	-0.41	0.18	-0.47	0.15
$f_{D_{0}^{*}D\pi/D_{1}D_{0}^{*}}$	-2.30	1.12	-1.53	0.97	-2.07	0.85	-3.13	1.23	-1.53	1.02	-2.41	0.93
$f_{D'_{*}D^{*}\pi/D_{*}D^{*}}$	1.82	-1.14	1.30	-0.65	1.65	-0.70	2.44	-1.15	1.35	-0.72	1.91	-0.75
$f_{D\pi/D_0^*}$	-0.88	-1.28	0.36	0.17	-0.31	-0.34	-0.83	-1.23	0.31	0.18	-0.27	-0.33
$f_{D^*\pi/D'}$	-0.21	-0.05	-0.13	0.21	-0.18	0.09	-0.30	-0.04	-0.15	0.23	-0.23	0.10
NR D^*/D ratio	0.58	-0.16	0.11	-0.09	0.38	-0.04	0.66	-0.16	0.11	-0.09	0.40	-0.03
$\mathcal{B}(B^- \to D^{(*)} \pi \pi \ell \bar{\nu})$	1.19	-1.97	0.25	-1.28	0.78	-1.28	1.98	-1.71	0.40	-1.20	1.20	-1.18
X^*/X and Y^*/Y ratio	0.61	-1.15	0.09	-0.27	0.39	-0.52	0.74	-1.02	0.08	-0.24	0.42	-0.47
X/Y and X^*/Y^* ratio	0.76	-0.83	0.21	-0.65	0.52	-0.60	1.09	-0.76	0.25	-0.63	0.68	-0.57
$D_1 \rightarrow D\pi\pi$	2.22	-1.54	0.74	-1.08	1.63	-1.05	2.74	-1.48	0.76	-1.06	1.81	-1.03
$f_{D_2^*}$	-0.14	-0.01	-0.10	0.07	-0.12	0.03	-0.16	-0.01	-0.10	0.07	-0.13	0.03
$\mathcal{B}(D^{*+} \rightarrow D^0 \pi^+)$	0.73	-0.01	0.43	-0.34	0.62	-0.17	0.80	-0.00	0.41	-0.33	0.61	-0.17
$\mathcal{B}(D^0 \to K^- \pi^+)$	0.69	0.02	-0.21	-1.63	0.29	-0.80	0.92	0.12	-0.27	-1.68	0.35	-0.80
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$	-1.46	-0.42	-2.17	0.30	-1.89	0.01	-1.43	-0.42	-2.10	0.28	-1.77	-0.01
$ au_{B^-}/ au_{B^0}$	0.26	0.16	0.63	0.27	0.46	0.19	0.22	0.16	0.58	0.28	0.41	0.19
f_{+-}/f_{00}	0.88	0.43	0.66	-0.53	0.82	-0.12	0.91	0.48	0.57	-0.52	0.75	-0.10
Number of $B\overline{B}$ events	0.00	-0.00	-1.11	-1.11	-0.55	-0.55	0.00	-0.00	-1.11	-1.11	-0.55	-0.55
Off-peak luminosity	0.05	0.01	-0.02	-0.00	0.02	0.00	0.07	0.00	-0.02	-0.00	0.02	-0.00
B momentum distribution	-0.96	0.63	1.29	-0.54	-1.15	0.48	1.30	-0.10	1.27	-0.64	1.31	-0.35
Lepton PID efficiency	0.52	0.16	1.21	0.82	0.90	0.46	3.30	0.06	5.11	5.83	1.99	2.90
Lepton mis-ID	0.03	0.01	-0.01	-0.01	0.01	-0.00	2.65	0.70	-0.59	-0.50	1.06	-0.01
Kaon PID	0.07	0.80	0.28	0.23	0.18	0.38	1.02	0.71	0.35	0.29	0.70	0.39
Tracking efficiency	-1.02	-0.43	-3.35	-2.00	-2.25	-1.15	-0.63	-0.28	-3.37	-2.09	-2.02	-1.14
Radiative corrections	-3.13	-1.04	-2.87	-0.74	-3.02	-0.71	-0.76	-0.61	-0.82	-0.25	-0.79	-0.33
Bremsstrahlung	0.07	0.00	-0.13	-0.28	-0.04	-0.14	0.00	0.00	0.00	0.00	0.00	0.00
Vertexing	0.83	-0.64	0.63	0.60	0.78	0.09	1.79	-0.76	0.97	0.54	1.41	0.01
Background total	1.39	1.12	0.64	0.34	1.07	0.51	1.58	1.09	0.67	0.38	1.16	0.49
Total	6.25	5.66	6.01	4.03	5.99	3.20	8.12	5.47	7.35	7.07	6.06	4.23

EPS2009 16 July 2009

Untagged $B \rightarrow D_1/D_2^* \ell v$

$B \rightarrow D(^*)\tau v$: backgrounds

- Largest background from $B \rightarrow D(*)\ell v$
 - Direct or from D** feed-down
- Combine $B_{tag} + D^{(*)} + \ell \rightarrow Y(4S)$

$$- P_{miss} = (p_{e+e} - p_{tag} - p_{D(*)} - p_{\ell})$$

- $m_{miss}^{2} = P_{miss}^{2}$ signal form a broad tail out to: $m_{miss}^{2} \sim 8 \text{ GeV}^{2}/c^{4}$
- Leptons from τ tipically have a soft spectrum
- Most dangerous background from $B \rightarrow D^{**} \ell v$
 - Select D(*)π⁰ candidates and fitted togheter with the signal sample to reduce the sensitivity to D** modeling

$B \rightarrow D(^*)\tau v: q^2$ projection

EPS2009 16 July 2009

$B \rightarrow D(^*)\tau v$: systematics

Source			Fractional un	certainty (%)		
	$D^0 au u$	$D^{*0}\tau\nu$	$D^+ \tau \nu$	$D^{*+}\tau\nu$	$D\tau\nu$	$D^* \tau \nu$
			Additive systems	tic uncertainties		
MC stat. (PDF shape)	11.5	8.4	4.5	1.8	6.9	4.7
MC stat. (constraints)	4.2	1.9	6.1	1.3	3.6	1.4
Comb. BG modeling	7.5	4.1	11.5	2.6	9.1	2.9
D^{**} modeling	5.7	0.5	1.6	0.2	3.0	0.4
$B \to D^*$ form factors	1.9	0.7	0.8	0.2	1.4	0.4
$B \rightarrow D$ form factors	0.2	0.7	0.6	0.2	0.3	0.4
$m_{\rm miss}^2$ tail modeling	1.5	0.5	1.2	0.4	1.6	0.1
π^0 crossfeed constraints	0.5	1.1	0.5	0.9	0.5	1.0
D^{**} feed-down	0.4	0.1	0.1	0.3	0.2	0.2
$D^{**}\tau^-\overline{\nu}_{\tau}$ abundance	0.4	1.3	0.3	0.2	0.3	0.8
Total additive	15.6	9.7	14.0	3.6	12.5	5.8
		Mı	iltiplicative syste	matic uncertainti	es	
MC stat. (efficiency)	1.2	1.1	1.5	1.1	1.0	0.8
Bremsstrahlung/FSR	0.6	0.5	0.3	0.4	0.4	0.5
Tracking ϵ	0.0	0.0	0.0	0.0	0.0	0.0
$e \text{ PID } \varepsilon$	0.5	0.5	0.6	0.6	0.6	0.6
$\mu \text{ PID } \epsilon$	0.5	0.6	0.7	0.6	0.6	0.6
$K \text{ PID } \varepsilon$	0.2	0.1	0.2	0.0	0.2	0.0
$\pi \text{ PID } \epsilon$	0.1	0.1	0.2	0.0	0.1	0.1
$K_S^0 \epsilon$	0.1	0.0	0.1	0.1	0.1	0.0
Neutral (π^0 and γ) ε	0.0	0.0	0.0	0.1	0.0	0.0
Daughter \mathcal{B} 's	0.1	0.3	0.0	0.1	0.1	0.3
$\mathcal{B}(au^- ightarrow \ell^- \overline{ u}_\ell u_ au)$	0.2	0.2	0.2	0.2	0.2	0.2
Total multiplicative	1.6	1.5	1.8	1.4	1.4	1.3
Total	15.6	9.9	14.0	3.9	12.5	6.0
$\mathcal{B}(B \to D^{(*)} \ell^- \overline{\nu}_\ell)$	10.2	7.7	9.4	3.7	6.8	3.4

EPS2009 16 July 2009