Inclusive $b \rightarrow u$ Decays and Determination of V_{ub} at Belle

The 2009 Europhysics Conference on High Energy Physics

中村 勇 / KEK
• Precise Determination of $|V_{ub}|$ is important for the test of CKM mechanism
Sides measurement not as accurate as angles
KEKB B-Factory

Belle Detector

KEKEB and Belle

- Belle Detector, KEKB collider at KEK, Tsukuba, Japan
- World brightest collider $\mathcal{L} = 21 \text{ nb}^{-1}/s$
- Accumulated $\sim 950 \text{ fb}^{-1}$
Measurement of V_{ub}

Measurement is very straightforward, use a relation

$$\Gamma(b \rightarrow u\ell^−\bar{\nu}) = \frac{G_F^2}{192\pi^2} |V_{ub}|^2 m_b^5 \left(1 + \text{補正項}\right)$$

Only need to count the number of $b \rightarrow u\ell^−\bar{\nu}$ events, however in reality
Measurement of V_{ub}

- In reality,

To get 補正項, we have to know structure of B meson

- In inclusive case
 ⇒ HQET parameters, b and c quark masses
- in exclusive case
 ⇒ form factors
|V_{ub}| from Inclusive Semileptonic

- must deal with 50 times bigger background with identical topology.

\[
\frac{\Gamma(b \rightarrow u\ell^+\bar{\nu})}{\Gamma(b \rightarrow c\ell^-\bar{\nu})} \approx \frac{|V_{ub}|^2}{|V_{cb}|^2} \approx \frac{1}{50}
\]

- enhance \(b \rightarrow u\ell^+\bar{\nu} \) using kinematic variables,
 - \(E_\ell \): Lepton energy distribution around endpoint
 - \(m_X, q^2 \) or \(P_+ \equiv E_x - |p_x| \)

hence We actually measure,

\[
\Delta B(B \rightarrow X_u \ell^- \bar{\nu}) = f_u \cdot B(B \rightarrow X_u \ell^- \bar{\nu})
\]

- \(f_u \) is the fraction of phase space
Belle Endpoint Measurement

- 27 fb$^{-1}$
- Measure ΔB for $p_e^* > p_{\text{cut}}$
 (p_e^*: electron momentum in $\Upsilon(4S)$ frame)
- Lowest $p_{\text{cut}} = 1.9$ GeV
- Systematic error dominant because of large background

$\Delta B = (8.47 \pm 0.37(\text{stat.}) \pm 1.53(\text{syst.})) \times 10^{-4}$

for $p^* > 1.9$ GeV

with BLNP, Phys. Rev. D 72, 073006 (2005)

$V_{ub} = \left(4.64 \pm 0.43^{+0.29}_{-0.31} \right) \times 10^{-3}$

HFAG Winter 2009 combination
Belle Hadronic Tag Measurement

- arXiv:0907.0379 (July 2009)
- "Fully" reconstruct one B (B_{tag}), exclusively
 - Total of ~ 180 exclusive modes
 - Known B_{sig} 4-momentum
 - High purity, low efficiency
 - need many events
- 605 fb$^{-1}$ Belle Data (~2005)

<table>
<thead>
<tr>
<th></th>
<th>eff. (%)</th>
<th>purity</th>
<th>N_{tag} ($\times 10^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>charged</td>
<td>0.29</td>
<td>0.25</td>
<td>689</td>
</tr>
<tr>
<td>neutral</td>
<td>0.28</td>
<td>0.30</td>
<td>479</td>
</tr>
</tbody>
</table>

- $m_{bc} > 5.27$ GeV, $|\Delta E| < 0.05$ GeV
- more than million reconstructed B
Event Selection with BDT

- One Lepton with $p^B > 1$ GeV
- Further suppression of $b \rightarrow c$ events with Boosted Decision Tree method
- 17 variables with correlations
 - Number of Kaons (charged and K^{0}_S)
 - m_X
 - q^2
 - m_{mis}
 - $P_+ \equiv E_X - |p_X|$
 - $m_{bc}, \Delta E$
 - Impact parameters
 - Total charge of the Event
 - ...

- single optimised cut in BDT classifier
- efficiency $\sim 22\%$
Signal Extraction

- Background subtracted prior to fit
 - not from B decay (scaled off resonance)
 - not correctly reconstructed B_tag
 (MC shape scaled to m_{bc} sideband)
- Fit in 2D $m_X - q^2$ distribution (5x4 bins)
- 3 components (MC driven)
 - $X_u \ell \nu$ contribution
 - $X_c \ell \nu$ contribution
 - Secondary and fakes

<table>
<thead>
<tr>
<th>Source</th>
<th># Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDT selected</td>
<td>5544 ± 54</td>
</tr>
<tr>
<td>scaled off-resonance</td>
<td>35 ± 18</td>
</tr>
<tr>
<td>wrong B_tag</td>
<td>825 ± 38</td>
</tr>
<tr>
<td>$X_u \ell \nu$</td>
<td>1032 ± 91</td>
</tr>
<tr>
<td>$X_c \ell \nu$</td>
<td>3615 ± 32</td>
</tr>
<tr>
<td>Secondary and fakes</td>
<td>38 ± 2</td>
</tr>
</tbody>
</table>

Projected Distributions:

- M_X (GeV/c2)
- q^2 (GeV2/c2)
Result

- Partial branching fraction expressed by
 \[
 \Delta B(B \to X_u \ell^- \bar{\nu}, \Delta) = \frac{N^\Delta_{b \to u}}{\varepsilon^\Delta_{b \to u} N_{\text{tag}}}(1 - \delta_{\text{rad}})
 \]

- \(\delta_{\text{rad}}\): correction from QED radiation
- \(\varepsilon^\Delta_{b \to u}\): selection efficiency \(\sim 22\%\)

\[\Delta B = 1.963(1 \pm 0.088 \pm 0.081) \times 10^{-3}\]
for \(p_\ell^B > 1\) GeV

Systematic Errors

<table>
<thead>
<tr>
<th>(p_\ell^B > 1.0) GeV</th>
<th>(\Delta B/B (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{B}(D^{(*)}\ell\nu))</td>
<td>1.2</td>
</tr>
<tr>
<td>((D^{(*)}\ell\nu)) form factors</td>
<td>1.2</td>
</tr>
<tr>
<td>(\mathcal{B}(D^{(*)}\ell\nu)) & form factors</td>
<td>0.2</td>
</tr>
<tr>
<td>(B \to X_u \ell\nu) (SF)</td>
<td>3.6</td>
</tr>
<tr>
<td>(B \to X_u \ell\nu) ((g \to s \bar{s}))</td>
<td>1.5</td>
</tr>
<tr>
<td>(\mathcal{B}(B \to \pi/\rho/\omega \ell\nu))</td>
<td>2.3</td>
</tr>
<tr>
<td>(\mathcal{B}(B \to \eta, \eta' \ell\nu))</td>
<td>3.2</td>
</tr>
<tr>
<td>(\mathcal{B}(B \to X_u \ell\nu)) un-meas.</td>
<td>2.9</td>
</tr>
<tr>
<td>Cont./Comb.</td>
<td>1.8</td>
</tr>
<tr>
<td>Sec./Fakes/Fit.</td>
<td>1.0</td>
</tr>
<tr>
<td>PID/Reconstruction</td>
<td>3.1</td>
</tr>
<tr>
<td>BDT</td>
<td>3.1</td>
</tr>
<tr>
<td>Systematics</td>
<td>8.1</td>
</tr>
<tr>
<td>Statistics</td>
<td>8.8</td>
</tr>
</tbody>
</table>
\(\Delta B \) to \(V_{ub} \)

\(V_{ub} \) is obtained by relation,

\[
|V_{ub}|^2 = \frac{\Delta B(B \to X_u \ell^- \bar{\nu}, \Delta)}{\tau_B \Delta \mathcal{R}}
\]

- \(\tau_B \) average B lifetime
- \(\Delta \mathcal{R} \): partial rate from theory
 - GGOU, JHEP 0710, 058 (2007)

| Theory | \(|V_{ub}| \times 10^3 \) | stat. | sys. | \(m_b \) | th. |
|---------|---------------------|-------|------|--------|-----|
| BLNP | 4.37 | 4.3 | 4.0 | +3.1 | +4.3 |
| DGE | 4.46 | 4.3 | 4.0 | +3.2 | +1.0 |
| GGOU | 4.41 | 4.3 | 4.0 | 1.9 | +2.1 |

relative errors in %

- New combination will come later
終わり