Inclusive Semileptonic B Decays at BABAR

The 2009 Europhysics Conference on High Energy Physics 16-22 July 2009 Krakow, Poland

Jan Erik Sundermann (U Freiburg) for the BABAR collaboration

Overview

- Introduction: Heavy Quark Expansion (HQE) and moments of inclusive distributions
- Measurement of moments of the hadronic-mass distribution in inclusive decays B→X_cIv
- Measurement of moments of the combined hadronic mass-and-energy spectrum:
- Measurement of the unfolded hadronic mass spectrum and its moments in decays B→X_uIv
 SLAC-PUB-13036
- HQE-fit: Extraction of |V_{cb}|, m_b, m_c, B(B→X_cIv), and the leading non-perturbative HQE-parameters

Inclusive Semileptonic B Decays

- Study of semileptonic $B \to X_{c/u} Iv$ decays offers laboratory for studying the b quark in the B meson
- Single hadronic current gives better control over theoretical uncertainties
- Γ_{sl} described by *Heavy Quark Expansion* (HQE) in 1/m_bⁿ and α_{s}

- First non-pert. correction at $O(1/m_b^2)$
- μ_{π}^{2} : kinetic energy of the b-quark, μ_{G}^{2} : chromomagnetic moment

$$\Gamma_{sl}(B \to X_{c,u} l \nu) = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{xb}|^2 (1 + A_{ew}) A^{pert} A^{nonpert}$$

free quark decay perturbative corr. non-pert. corr.

Non-perturbative effects and quark masses need to be measured for a reliable extractions of $|V_{cb}|$ and $|V_{ub}|$

Inclusive Semileptonic B Decays at BABAR

Moments of Inclusive Distributions

- Measure moments of inclusive distributions over wide range of phase space to avoid problems with quark-hadron duality
 - Moments depend only on quark masses and same set of universal non-perturbative parameters

$$\langle E_l^n \rangle = N_{norm} \int \left(E_l - \langle E_l \rangle \right)^n \left(\frac{\mathrm{d} \Gamma_{c,u}}{\mathrm{d} E_l} \right) \mathrm{d} E_l \qquad \left\langle m_X^n \right\rangle = N_{norm} \int m_X^n \left(\frac{\mathrm{d} \Gamma_{c,u}}{\mathrm{d} m_X} \right) \mathrm{d} m_X$$

- Calculations available in *kinetic* [Benson et al., Nucl. Phys.
 B665:367] and *1S* scheme [Bauer et al., Phys. Rev. D70:094017]
- Combined fit: experimental determination of quark masses and nonperturbatibe parameters
- Determination of $|V_{ub}|$ needs precise measurement of m_b
 - $b \rightarrow clv$: sensitive to $m_b m_c$, high statistics measurement
 - b→ulv: sensitive to m_b , experimentally challenging, large b→clv background, same mode in which $|V_{ub}|$ is extracted

Moments of the *Hadronic Mass* and the Combined Hadronic Mass-and-Energy Distributions in Decays B→X_cIv

Analysis Strategy

- Dataset: 230 million decays e⁺e⁻→Y (4S)→BB
- On the "recoil" of fully-reconstructed B_{reco}
 - flavor and four-momentum of recoiling B_{SL} known
 - $m_{ES} = \sqrt{\frac{s}{4} \vec{p}_B^2}$ used to subtract combinatorial background
- Measure one recoiling lepton with p^{*}_I>0.8GeV in the B_{SL} restframe
- Remaining particles form the inclusive hadronic X_c-system
- Missing mass and energy consistent with unmeasured neutrino
- Improve resolution with kinematic fit

Reconstructed Spectra

- Background contributions:
 - mis-reconstructed B_{reco}-mesons (combinatorial background)
 - non-BB decays: e⁺e⁻ →qq → "B⁻_{reco}" + ℓ

determined from data

determined in simulations

- secondary decays: $B^{0,+} \rightarrow D^{(*)0,+}X \rightarrow Y \downarrow^{+} v$, $B^{-0,+} \rightarrow J/\psi$, $\psi(2S) \rightarrow \downarrow^{+}\downarrow^{-}$, ...
- semileptonic decays to charmless hadronic final states: $B \rightarrow X_{\mu} I \nu$
- BB oscillations

Calibration Method

- Unmeasured/missing particles bias hadronic system: 5-16% effect for <m,>
 - Linear correction functions for moments (applied event-by-event):

$$\langle m_{X,true}^{~~n}\rangle \leftrightarrow \langle m_{X,reco}^{~~n}\rangle, \ \langle n_{X,true}^{~~n}\rangle \leftrightarrow \langle n_{X,reco}^{~~n}\rangle$$

- Determined and tested in simulation
- Measure moments <mⁿ_x and <nⁿ_x as function of minimum lepton momentum

 $n_x^2 = m_x^2 - 2\Lambda E_{xB} + \Lambda^2$, with $\Lambda = 0.65$ GeV

[Gambino and Uraltsev, hep-ph/0401063]

- Systematic uncertainties:
 - Low dependence on simulation model
 - Main systematics: calibration method, photon selection efficiency, background subtraction

measured moment

Measurement of the unfolded hadronic mass spectrum and its moments in decays $B \rightarrow X_u Iv$

Mass Spectrum and Moments

- 383 million decays Y (4S)→BB
- Measured on the recoil of fully reconstructed B mesons
- Select lepton with $E_1 > 1 \text{GeV}$
- Large background $B \rightarrow X_c I v$
- Veto events with K[±], K_s, and partially reconstructed D^{*±}
- Unfold spectrum for detector acceptance, efficiency, and resolution

Moments and Interpretation

SLAC-PUB-13036

• Calculated moments from unfolded spectrum: (highly correlated: ρ_{12} =0.99, ρ_{23} =0.94, ρ_{13} =0.88)

 $\begin{array}{ll} < m_{\chi}^{\ 2} > & = (1.96 \pm 0.34(\text{stat}) \pm 0.53(\text{syst})) \ \text{GeV}^2 \\ < (m_{\chi}^{\ 2})^2 - < m_{\chi}^{\ 2} >^2 > = (1.92 \pm 0.59(\text{stat}) \pm 0.87(\text{syst})) \ \text{GeV}^4 \\ < (m_{\chi}^{\ 2})^3 - < m_{\chi}^{\ 2} >^3 > = (1.79 \pm 0.62(\text{stat}) \pm 0.78(\text{syst})) \ \text{GeV}^6 \end{array}$

• HQE-fit to these moments in then *kinetic* scheme:

 $\begin{array}{l} \mbox{m}_{_{b}} \mbox{=} (4.604 \, \pm \, 0.250) \mbox{ GeV} \\ \mbox{\mu}_{_{\pi}}^{^{2}} \mbox{=} (0.398 \, \pm \, 0.240) \mbox{ GeV}^{2} \end{array}$

[Gambino et al., JHEP 0509, 010 (2005)]

[hep-ex/0707.2670; Phys. Rev. D69,111104; Phys. Rev. D72,052004; Phys. Rev. Lett. 97 171803]

Inclusive Semileptonic B Decays at BABAR

HQE-fit: Extraction of $|V_{cb}|$, m_b , m_c , $B(B \rightarrow X_c Iv)$, and the leading nonperturbative HQE-parameters

Combined HQE-Fits to BABAR Measurements

- Two combined χ^2 -fits in the *kinetic* scheme:
 - Fit only subsets of measurements to reduce correlations
 - Uneven mass/mixed moments not used (reduced accuracy of the expansion)
 - 12 mass moments **or** 12 mixed moments measured in $B \rightarrow X_c lv$
 - 13 electron energy moments measured in $B \rightarrow X_c lv$ [Phys. Rev. D69, 11104 (with updated background BFs)]
 - − 9 photon-energy moments measured in $B \rightarrow X_s \gamma$ [Phys.Rev. D72,052004, Phys.Rev.Lett. 97,171803, Phys.Rev. D77,051103]
- 8 fit parameters:

 $|V_{cb}|$, $B(B \rightarrow X_c lv)$, m_b , m_c , μ_{π}^2 , μ_{G}^2 , ρ_{LS}^3 , ρ_{D}^3

- Additional inputs:
 - B-meson lifetime: $\tau_B = (1.585 \pm 0.007) \text{ ps}$
 - Constraints: $\mu_{G}^{2} = (0.35 \pm 0.07) \text{GeV}^{2}$ $\rho_{+S}^{3} = (-0.15 \pm 0.10) \text{GeV}^{3}$

sum rules

B-B* mass splitting

HQE Predictions (Mass Moments)

Inclusive Semileptonic B Decays at BABAR

HQE Predictions (Mixed Moments)

Inclusive Semileptonic B Decays at BABAR

Fit Results and Comparison

(kinetic scheme with μ =1)

	V _{cb} x 10 ³	m _₅ [GeV]	m _c [GeV]	μ_{π}^{2} [GeV ²]
mass moments	$42.05{\pm}0.83$	$4.549 {\pm} 0.049$	$1.077 {\pm} 0.074$	0.476±0.063
mixed moments	$41.91 {\pm} 0.85$	$4.566 {\pm} 0.053$	$1.101 {\pm} 0.078$	0.452±0.069
$B \rightarrow X_u lv$ moments		4.604 ± 0.250		0.398±0.240
HFAG (Winter 2009)*	$41.54{\pm}0.73$	$4.620 {\pm} 0.035$	$1.190 {\pm} 0.052$	0.424±0.042
BELLE 2008 [Phys.Rev. D78,032016]	41.58±0.90	4.543±0.075	1.055±0.118	0.539±0.079

(* combined result includes published moments $B \rightarrow X_c Iv$ and $B \rightarrow X_s \gamma$ measured by BaBar, BELLE, CDF, CLEO, and DELPHI)

- Agreement with other measurements and combined HFAG results
- Good agreement of $B \rightarrow X_{\mu} I \nu$ and $B \rightarrow X_{c} I \nu$ results
 - m_b^2 and μ_{π}^2 extracted in different decay modes compatible
- Good agreement of results of mixed and mass moments
 - Indicating that higher order corrections have been treated correctly for the calculation of the mass moments

Comparison of Fits

EPS'09, Krakow, 17.07.2009

Summary

- Measurement of the first six moments of the hadronic mass spectrum in semileptonic B-meson decays B→X_clv
 - Good agreement with previous measurements
- First measurement of the mixed moments $<(n_x^2)^k>$, k=1...3
- Measurement of the unfolded mass spectrum and its moments in $B \rightarrow X_u Iv$

$$\label{eq:mb} \begin{split} m_{_{b}} &= (4.604\,\pm\,0.250)~\text{GeV} \\ \mu_{_{\pi}}^{^{2}} &= (0.398\,\pm\,0.240)~\text{GeV}^2 \end{split}$$

- Extraction of $|V_{cb}|$, m_b and m_c, semileptonic branching fraction B(B-> $X_c Iv$), and non-perturbative HQE-parameter in the *kinetic* scheme
 - In agreement with other measurements

 $\begin{aligned} |V_{cb}| &= (42.05 \pm 0.85) \ 10^{-3} \\ m_{b} &= (4.549 \pm 0.049) \ \text{GeV} \\ m_{b} &- m_{c} = (3.472 \pm 0.032) \ \text{GeV} \\ B(B->X_{c}/V) &= (10.64 \pm 0.18)\% \end{aligned}$

-- Backup Slides --

Verification with MC-Simulations of Exclusive Modes

- Calibration curves constructed using a mixture of different exclusive hadronic final states
- Calibration applied to different ● simulated exclusive signal decays reproduces true underlying moments

before

HQE Fit Predictions (Mass Moments)

Inclusive Semileptonic B Decays at BABAR

EPS'09, Krakow, 17.07.2009

HQE Fit Predictions (Mass Moments)

HQE Fit Predictions (Mixed Moments)

Inclusive Semileptonic B Decays at BABAR

EPS'09, Krakow, 17.07.2009

HQE Fit Predictions (Mixed Moments)

HQE Fit Results

• Fits in good agreement with each other and previous measurements

Fit 1 (mass moments)

 $m_{b}-m_{c} = (3.472 \pm 0.032) \text{ GeV/c}^{2}$

	$ V_{cb} \times 10^3$	$m_b \left[\text{GeV}/c^2 \right]$	$m_c \left[\text{GeV}/c^2 \right]$	$\mathcal{B}\left[\% ight]$	$\mu_{\pi}^2 [\mathrm{GeV}^2]$	$\mu_G^2 \left[\text{GeV}^2 \right]$	$ ho_D^3 \left[{ m GeV}^3 ight]$	$ ho_{LS}^3 \left[{ m GeV}^3 ight]$
Results	42.05	4.549	1.077	10.642	0.476	0.300	0.203	-0.144
Δ_{exp}	0.45	0.031	0.041	0.165	0.021	0.044	0.017	0.075
Δ_{theo}	0.37	0.038	0.062	0.063	0.059	0.038	0.027	0.056
$\Delta_{\Gamma_{SL}}$	0.59							
Δ_{tot}	0.83	0.049	0.074	0.176	0.063	0.058	0.032	0.094

1.4% theoretical uncertainty

on the semileptonic rate

Fit 2 (mixed hadronic moments)				$m_{b}^{-}-m_{c}^{-} = (3.465 \pm 0.032) \text{ GeV/c}^{2}$				32) GeV/c ²
	$ V_{cb} \times 10^3$	$m_b \left[\text{GeV}/c^2 \right]$	$m_c \left[\text{GeV}/c^2 \right]$	$\mathcal{B}\left[\% ight]$	$\mu_{\pi}^2 [\mathrm{GeV}^2]$	$\mu_G^2 [{ m GeV}^2]$	$ ho_D^3 [{ m GeV}^3]$	$ ho_{LS}^3 [{ m GeV}^3]$
Results	41.91	4.566	1.101	10.637	0.452	0.304	0.190	-0.156
Δ_{exp}	0.48	0.034	0.045	0.166	0.023	0.047	0.013	0.079
Δ_{theo}	0.38	0.041	0.064	0.061	0.065	0.039	0.031	0.052
$\Delta_{\Gamma_{SL}}$	0.59							
Δ_{tot}	0.85	0.053	0.078	0.176	0.069	0.061	0.034	0.095
	<u> </u>	<u></u>	ل ہا			(kinetic scheme with μ =1GeV)		
	2.0%	1.1%	6.5%					