

Carlos A. Chavez

University of Liverpool on behalf of the BABAR Collaboration

European Physical Society HEP

July 16-22, 2009 Krakow, Poland

Outline

- B-Factories as Charm Factories
- Charm Mixing Formalism
- $D^0 \overline{D}^0$ Mixing Measurements

 $-D^0 \rightarrow K^+ \pi^-$ decay time analysis

- Lifetime ratio from tagged $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$

- Lifetime ratio from untagged $D^0 \rightarrow K^+K^-$

Conclusions

Charm Physics at B-Factory?

D⁰ Mixing Formalism

Neutral D mesons are produced D_1, D_2 have masses M_1, M_2 and as *flavor eigenstates* D^0 and $\overline{D^0}$ widths Γ_1, Γ_2 and decay via : Mixing occurs when there is a $i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix}$ non-zero mass difference $\Delta M = M_1 - M_2$ as mass eigenstates D_1 , D_2 or lifetime difference $\Delta \Gamma = \Gamma_1 - \Gamma_2$ $|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$ For convenience define quantities $|D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$ \boldsymbol{x} and \boldsymbol{y} where $|q|^2 + |p|^2 = 1$ $x = \frac{\Delta M}{\Gamma}, \quad y = \frac{\Delta \Gamma}{2\Gamma}$ and $\left(\frac{q}{p}\right)^2 = \frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}$ where $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

Mixing in Neutral Meson System

- Of all the neutral mesons, the D system exhibits the least mixing
- $D^0 \overline{D}^0$ mixing in the Standard Model is highly suppressed:
 - short distance (s,d) quark loop diagrams GIM suppressed
 - short distance b-quark loop diagrams CKM suppressed
 - mass difference amplitude $x \le O(10^{-5})$, $y \sim 0$

• long distance amplitudes predominate but hard to quantify:

 $D^{0} \xrightarrow{\pi\pi}_{KK} \xrightarrow{K\pi}_{K\pi} \overline{D}^{0}$

• New Physics signature: CPV

E. Golowich, J. Hewett, S. Pakvasa, A. Petrov, *Phys. Rev.* **D76** 095009 (2007)

Combined Mixing Measurements

Best evidence for $D^0 - \overline{D}^0$ mixing to date (mainly *BaBar*, *BELLE*, *CDF*, *CLEO-c*):

BABAR: PRL 98 211802 (2007)	$D^0 \rightarrow K^+ \pi^-$ decay time analysis, BABAR	3.9 σ
BELLE: PRL 98 211803 (2007)	$D^0 \rightarrow K^+ K^-, \pi^+ \pi^- vs K^+ \pi^-$ lifetime difference analysis, BELLE	3.2 σ
BELLE: PRL 99 131803 (2007)	$D^0 \rightarrow K_s \pi^+ \pi^-$ time dependent amplitude analysis, BELLE	2.2 σ
CDF: PRL 100 , 121802 (2008)	$D^0 \rightarrow K^+ \pi^-$ decay time analysis, CDF	3.8 σ
BABAR: PRD 78 , 011105 R (2008)	$D^0 \rightarrow K^+ K^-, \pi^+ \pi^- vs K^+ \pi^-$ lifetime difference analysis, BABAR	3σ
BABAR: arXiv:0807, 4544 (2008)	$D^0 \rightarrow K^* \pi^- \pi^0$ time dependent amplitude analysis, BABAR	3.1σ
CLEO-c PRD 78, 012001, (2008)	$D^0 \rightarrow K^+ \pi^-$ Relative Strong Phase Using Quantum-Correlated Measurements in $e^+e^- \rightarrow D^0 D^0$ at CLEO	
Significance of all mixing results combined by Heavy Flavor Averaging Group ICHEP2008:		~9 .8σ

$$x = 1.00^{+0.24}_{-0.26}$$
%
 $y = 0.76^{+0.17}_{-0.18}$ %

http://www.slac.stanford.edu/xorg/hfag/charm/ICHEP08/

$D^0 \rightarrow K^+ \pi^-$ Decay Time Measurement

Mixing in "Wrong Sign" Decays $(D^0 \rightarrow K^+ \pi^-)$

Two types of WS Decays:

- Doubly Cabibbo-supressed (DCS)
- Mixing followed by Cabibbo-Favored (CF) decay

Two ways to reach same final state \Rightarrow interference!

 $\delta_{\mathbf{K}\pi}$ strong phase difference between CF and DCS decay amplitudes $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}, \quad y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$

 $\delta_{K\pi}\,$ measured by CLEO-c PRD 78, 012001, (2008)

EPS, July 16-22, 2009

"Wrong Sign" Fit with Mixing

Observation of Mixing in $D^0 \rightarrow K^+ \pi^-$

Evidence for mixing from *BaBar* (3.9 σ) and confirmation by *CDF* (3.8 σ)

Two completely different experiments (BaBar and CDF) yield nearly identical results:

Experiment	$R_D(10^{-3})$	$y'(10^{-3})$	$x^{\prime 2}(10^{-3})$	Mixing Signif.
CDF	3.04 ± 0.55	8.5 ± 7.6	-0.12 ± 0.35	3.8
BABAR	3.03 ± 0.19	9.7 ± 5.4	-0.22 ± 0.37	3.9
Belle	3.64 ± 0.17	0.6 + 4.0 - 3.9	0.18 + 0.21 - 0.23	2.0

Lifetime Ratio Measurements

Lifetime Ratio Observables

In the D* tagged analysis, measure:

 $\tau_{\kappa\pi} \equiv \tau(D^{0} \rightarrow K^{-}\pi^{+} + c.c.) \ CP \text{-mixed right-sign Cabibbo-favored (CF) decay lifetime}$ $\tau_{hh}^{D^{0}} \equiv \tau(D^{0} \rightarrow h^{-}h^{+}) \qquad CP \text{-even singly Cabibbo-suppressed (SCS) decay lifetime}$ $with \ h=K \text{ or } \pi$ $Construct \text{ mixing variable} \qquad y_{CP} \equiv \frac{\tau_{K\pi}}{\tau_{hh}} - 1 \qquad \text{where} \qquad \tau_{hh} = \frac{\tau_{hh}^{D^{0}} + \tau_{hh}^{\bar{D}^{0}}}{2}$ and CPV asymmetry: $\Delta Y \equiv \frac{\tau_{K\pi}}{\tau_{hh}} A_{\tau} \qquad \text{where} \qquad A_{\tau} = \frac{\tau_{hh}^{D^{0}} - \tau_{hh}^{\bar{D}^{0}}}{\tau_{hh}^{D^{0}} + \tau_{hh}^{\bar{D}^{0}}} = -A_{\Gamma}$

In the untagged analysis, measure only:

$$y_{CP} \equiv \frac{\tau_{K\pi}^{RS+WS}}{\tau_{hh}} - 1$$

where $\tau_{\kappa\pi}^{RS+WS}$ is the lifetime of the right-sign decay, with a small admixture of wrong sign decays In the limit of CP conservation, $\gamma_{CP} = \gamma$ and $\Delta \gamma = 0$

Carlos A. Chavez

EPS, July 16-22, 2009

D*-tagged D⁰ mass projections

• Mass projections (0.1447 < Δm < 0.1463 GeV/c²):

• Signal Purities (1.8495 < m < 1.8795 GeV/c²):

Sample	Size	Purity (%)
$K^{-}\pi^{+}$	$730,\!880$	99.9
K^-K^+	$69,\!696$	99.6
$\pi^{-}\pi^{+}$	$30,\!679$	98.0

D*-tagged D⁰ Lifetimes

Carlos A. Chavez

EPS, July 16-22, 2009

D*-tagged Lifetimes Ratio Results

Carlos A. Chavez

Untagged Lifetimes Ratio Analysis

- Samples:
- Untagged $D^{0} \rightarrow K^{-}\pi^{+}$ Untagged $D^{0} \rightarrow K^{-}\pi^{+}$ Untagged $D^{0} \rightarrow K^{-}K^{+}$ Untagged $D^{0} \rightarrow K^{-}K^{+}$ Untagged $D^{0} \rightarrow K^{-}K^{+}$ Untagged $D^{0} \rightarrow K^{-}K^{+}$
- Systematics considerations:
 - Signal systematics mostly cancel in y_{CP}
 - Background systematics don't cancel between modes
 - To minimize backgrounds, restrict sample to narrow D^o mass region symmetric about nominal D^o mass:
 - 1.8545 < m < 1.8745 GeV/c²
- Backgrounds:
 - Mainly combinatoric, small admixture of misreconstructed charm decays
 - Estimate combinatoric background decay time shape from sideband regions:
 - 1.81 < m < 1.83 GeV/c² and 1.90 < m < 1.92 GeV/c²
 - Estimate charm backgrounds from MC events ($c\bar{c} + uds + b\bar{b} + \tau^+\tau^-$)

Untagged Sample Mass Fit to Data

Data and purity yields in $1.8545 < m < 1.8745 \text{ GeV/}c^2$:

Carlos A. Chavez

EPS, July 16-22, 2009

Untagged D⁰ Decay Time Fit to Data

Systematic Uncertainties on Y_{CP}

Systematic variations:

- Signal:
 - Different resolution function models
 - Vary signal box size and position
- Combinatorial Background:
 - Vary parameters in a correlated manner using covariance matrices
- Charm Background:
 - Vary charm yields
 - Vary charm lifetimes
- Selection:
 - Vary decay time error selection
 - Vary multiple overlapping candidate selection
- Detector:
 - Apply different Silicon Vertex Tracker misalignments and beam spot positions in MC

Summary:

 $\Delta y_{CP} = y_{CP}(variation) - y_{CP}(standard)$

Source of systematic error:	∆ y _{CP} (%)
Signal:	± 0.111
Combinatorial:	± 0.115
Charm:	± 0.086
Selection:	± 0.071
Detector:	± 0.093

Y _{CP}	systematic error:	±0.22%
Y _{CP}	statistical error:	± 0.26%

Combined Y_{CP} Results

• We obtain the untagged result (*384 fb-1* data set):

 y_{CP} (untagged) = [1.12 \pm 0.26 (stat) \pm 0.22 (syst)]%

Excludes the no-mixing hypothesis

with a significance of (incl. syst.) : **3.3** σ

• Our previously published D* tagged D⁰ result from the 384 fb⁻¹ data set is

 y_{CP} (tagged) = [1.24 ± 0.39 (stat) ± 0.13 (syst)]% PRD 78 011105(R) (2008)

• The tagged and untagged datasets share no events in common and are thus statistically uncorrelated. Conservatively assuming a 100% correlation in the systematics between the two analyses, we obtain

 y_{CP} (correlated) = [1.16 ± 0.22 (stat) ± 0.18 (syst)]%

Excludes the no-mixing hypothesis with a significance of (incl. syst.) : **4.1** σ

• Assuming the systematics to be uncorrelated, we find

 y_{CP} (uncorrelated) = [1.17 ± 0.22 (stat) ± 0.14 (syst)]%

Conclusions

- Wrong Sign decays, BABAR measures (384 fb⁻¹):
 - $x'^2 = (-0.22\pm0.30\pm0.21)\times10^{-3}$ and $y' = (9.7\pm4.4\pm3.1)\times10^{-3}$
 - No-mixing hypothesis excluded at 3.9 σ
- From lifetime ratio, BABAR measures (384 fb⁻¹):
 Y_{CP} (untagged) = [1.12 ± 0.26 (stat.) ± 0.22 (syst.)]% Preliminary

 Y_{CP} (tagged) = [1.24 ± 0.39 (stat.) ± 0.13 (syst.)]% PRD 78 011105(R) (2008)

- New Y_{CP} (untagged) in good agreement with world average (Y_{CP} = 1.072%)
- with a significance of 3.3 σ (including systematics)
- Combining tagged and untagged results, BABAR measures:
 Y_{CP} (combined) = [1.16 ± 0.22 (stat.) ± 0.18 (syst.)]%
 - with a significance of 4.1 σ (including 100% correlated systematics)
- Collective evidence for D^{0} - \overline{D}^{0} mixing is compelling
 - The no-mixing point is excluded at >10 σ , including systematic uncertainties
 - However, no single measurement exceeds 5σ
- BABAR will update all mixing measurements to full data set, stay tuned !

PRL 98 211802 (2007)

Backup Slides

Generic BABAR Mixing Analysis

Tagged Sample

Identify the D^{o} flavor at productio using the decays $D^{*\pm} o \pi^{\pm}_{e} D^{0}$

- select events around the expect $\Delta m = m(D_{\text{rec.}}^{*+}) - m(D_{\text{rec.}}^{0})$
- The charge of the soft pion determines the flavor of the D^{O}

Identify the D^{O} flavor at decay using the charge of the Kaon

 $D^0
ightarrow K^- \pi^+$ right-sign (RS)

 $D^0 \rightarrow K^+ \pi^-$ wrong-sign (WS)

Vertexing with beam spot constraint determines $m_{K\pi}$, Δm , t decay time, and decay time error, σ_t

"Wrong Sign" Fit with no Mixing

Untagged Selection

- Selection requirements
 - ± tracks from a common point
 - KLHTight, piLHTight PID selectors
 - D^o invariant mass *m*, reconstructed decay time *t* and its error σ_t from beam constrained TreeFitter vertex fit
 - $P(\chi^2) > 0.1\%$
 - 1.80 < m < 1.93 GeV/c²
 - -25 < t < 25 psec
 - $\Box \sigma_t < 0.5 \, psec$
 - Remove B decays using D^{O} center of mass momentum cut
 - *P* >2.5* GeV/c
 - D^o daughter track number of DCH hits
 - N_{DCH} ≧ 12
 - Reduce uds backgrounds using helicity angle (angle between +track in D^{o} rest frame and D^{o} boost direction) cut:
 - |cosθ_h| < 0.7
 - Remove events containing a selected D^* tagged $D^0 \rightarrow \pi^+ \pi^-$, $K^{\mp} \pi^{\pm}$, $K^+ K^-$ decay
 - For multiple D^o candidates sharing tracks, keep the one with highest $P(\chi^2)$

Untagged Decay Time PDFs

• Signal: exponential folded with three Gaussian resolution functions:

 $\begin{aligned} \mathcal{D}(t,\sigma_t;s,t_0,\tau) &= \\ C_{\sigma_t}\int \exp(-t_{\text{true}}/\tau)\exp\left(-\frac{(t-t_{\text{true}}+t_0)^2}{2(s\cdot\sigma_t)^2}\right)\,dt_{\text{true}} \\ \mathcal{R}_X(t,\sigma_t;\tau_X) &= f_{t3}\mathcal{D}(t,\sigma_t;S_Xs_3,t_0,\tau_X) \\ &+ (1-f_{t3})\Big[f_{t2}\mathcal{D}(t,\sigma_t;S_Xs_2,t_0,\tau_X)\Big] \end{aligned}$

+ $(1-f_{t2})\mathcal{D}(t,\sigma_t;S_Xs_1,t_0,\tau_X)$,

where:

 t_0 = common offset parameter

 S_X = scale factor for each mode *X*, where $S_{K\pi}$ = 1, S_{KK} floating

 σ_t = decay time error for each candidate

 $C_{\sigma t}$ = normalization constant

parameters shared between modes: f_{ti} , s_i , t_0

- **Mis-reconstructed charm**: exponential folded with two Gaussian resolution functions: $\mathcal{P}_{hh}^{charm}(t,\sigma_t) = f_{charm}\mathcal{D}(t,\sigma_t;s_{1charm},0,\tau_{charm}) + (1 f_{charm})\mathcal{D}(t,\sigma_t;s_{2charm},0,\tau_{charm}).$
- Combinatoric: sum of two Gaussians and a third Gaussian (CB) with a power-law tail, where the Gaussian widths do not depend on σ_t

$$\mathcal{P}_{hh}^{\text{comb}}(t,\sigma_{t}) = f_{1}G(t;\bar{t}_{\text{Gauss}_{1}},\sigma_{\text{Gauss}_{1}}) \\ + (1-f_{2}) \Big[f_{3}G(t;\bar{t}_{\text{Gauss}_{2}},\sigma_{\text{Gauss}_{2}}) \\ + (1-f_{3})CB(t;\bar{t}_{\text{CB}},\sigma_{CB},\alpha,n) \Big]$$

$$CB(x;\bar{x},\sigma,\alpha,n) = C_{\text{CB}} \begin{cases} \exp\left(-\frac{(x-\bar{x})^{2}}{2\sigma^{2}}\right) & \text{if } \frac{x-\bar{x}}{\sigma} > -|\alpha| \\ \left(\frac{n}{|\alpha|}\right)^{n} \frac{\exp(-\frac{1}{2}\alpha^{2})}{\left(\frac{n}{|\alpha|} - |\alpha| \pm \frac{x-\bar{x}}{\sigma}\right)^{n}} & \text{otherwise,} \end{cases}$$

Combinatorial Decay Time Distributions

From "cocktail" ($c\bar{c} + uds + b\bar{b} + \tau^+\tau^-$) Monte Carlo in signal region:

Combinatorial probability density function from sideband fits
 Truth matched combinatorial decay time distribution

Cross Checks

Decay time fits to cocktail and signal MC datasets

find little bias in the difference between $\tau_{K\pi}$ and τ_{KK} lifetimes (<0.5 fsec)

Unblinded $K\pi$ lifetime:

	lifetime (fs)
Tagged dataset:	409.33 ± 0.70(<i>stat</i>)
Untagged dataset:	410.39 ± 0.38(<i>stat</i>)
PDG 2008 average:	410.1 ± 1.5

No significant variations in the efficiency to reconstruct signal decays versus true decay time

blinded y_{CP} split by running period:

Cross Checks

blinded y_{CP} split by D^0 polar angle:

blinded y_{CP} split by D^0 opening angle: (Average) All $\frac{1}{2^2 \times 10^{10} \times 10^2}$ $\chi < 0.85$ $0.85 < \chi < 1.15$ $1.15 < \chi$ $\frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{2}$

blinded y_{CP} split by D^0 CM momentum:

\Rightarrow no significant variations seen in y_{CP}

Vertexing Bias

