

Richard Kass for the BaBar Collaboration

Outline of Talk *Introduction *Dalitz study of $D_{s}^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}$ PRD 79, 032003 (2009) *Preliminary $D^{0} \rightarrow (\omega/\varphi/K^{*})\eta$ Branching Fractions *Summary & Conclusions

Introduction

A B-meson factory is also a charm factory. Cross section for $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}: \sigma_{B\overline{B}} = 1.05 \text{ nb}$ Cross section for $e^+e^- \rightarrow c\overline{c}: \sigma_{c\overline{c}} = 1.3 \text{ nb}$ Also get ~1 charm per B-meson decay BaBar data~531 fb⁻¹; >10⁹ charm particles produced

Dalitz study of $D^+_{s} \rightarrow \pi^+ \pi^- \pi^+$

- A Dalitz analysis can provide useful information on the dynamics/resonant substructure of a decay.
- Can be particularly useful to sort out the (confusing) role of scalar mesons I=1 I=1/2 I=0
- QCD: scalar meson candidates too numerous to fit in single $q\bar{q}$ nonet. May be multi-quark or meson-meson bound state.
- Experiment: Difficult to resolve scalar mesons due to large decay width.

I=1	I=1/2	I=0
a ₀ (980)	к(800) (?)	f ₀ (600)
a ₀ (1450)	$K_{0}^{*}(1430)$	f ₀ (980)
	1-1-1	f ₀ (1370)
-		f ₀ (1500)
	7	f ₀ (1700)
	1 - A Marile	$X_0(1550)$ (?)

D mesons very useful: In quark model $f_0(980)$ and $a_0(980)$ are mostly $s\bar{s}$ and $u\bar{u}/d\bar{d}$ respectively. **Large coupling to scalar mesons & well defined initial state (J^P=0⁻)**

BAR

IST

 $D_{s}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$ can proceed via several diagrams:

Intermediate resonances can include f_0 's and p's

Selection Criteria Use $D_s^{*+} \rightarrow D_s^{+} \gamma$ tag Use a likelihood ratio (LR) to improve S/B use $D^+_{s} \rightarrow K^+K^-\pi^+$ to build signal PDFs decay distance transverse to beam plane vertex information center of mass momentum of D_s^* Eliminate reflections from $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+ / \pi^- \pi^+) \pi^+$

Dalitz study of $D^+_{s} \rightarrow \pi^+ \pi^- \pi^+$

Symmetrized Dalitz Plot (2 entries per event)

Richard Kass

EPS 2009

BABAR Dalitz study of $D^+_s \rightarrow \pi^+ \pi^- \pi^+$

Lots of substructure evident in Dalitz Plot $f_0(980)$, region ~1.4 GeV/c²

Unravel structure with an unbinned maximum likelihood analysis

$$L = \prod_{events} \{f(M)\varepsilon(m_1^2, m_2^2) \frac{\sum_{i,j} c_i c_j^* A_i A_j^*}{N_A} + (1 - f(M)) \frac{\sum_i k_i^2 B_i B_i^*}{N_B} \} \quad m \equiv m_{\pi^+ \pi^-}$$

f(M) = fraction of signal events as function of D_s mass (M) ε = efficiency as a function of (m_{1}^{2}, m_{2}^{2}) in Dalitz Plot, 3rd order polynomial A=dynamical function describing the signal (more on next slide) B=dynamical function describing resonances in the background events c_{i} =complex amplitude for ith component of signal. Output of fit. k_{i} =real amplitude for ith component of background. Determined from sidebands. N_{A} , N_{B} = normalization factors for signal and background (respectively). **BABAR** Dalitz study of $D_{s}^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}$

P & D-wave: $A=BW(m_{\pi\pi}) \times T(\Omega)$

BW=relativistic Breit-Wigner with Blatt-Weisskopf form factors $T(\Omega)$ =angular factors

S-wave: avoid uncertainties in scalar meson properties:

Existence of certain states? Unitarity issues when broad BW's overlap.

	Mass (MeV)	Γ (MeV)
f ₀ (600)	400-1200	600-1000
f ₀ (980)	980±10	40-100
f ₀ (1370)	1200-1500	200-500

Parameterize S-wave amplitude in a model independent way: $A_{s}(m_{\pi\pi})=Interp\{c_{k}(m_{\pi\pi})exp[i\varphi_{k}(m_{\pi\pi})]\}_{k=1,,30}$ Divide the $m_{\pi\pi}$ spectrum in 29 slices and interpolate between endpoints each slice has ~ same number of events Fit for the 30 c_{K} 's and φ_{K} 's Systematic errors are evaluated in the fit. vary background models, BW barrier factors, selection criteria,

of $m_{\pi\pi}$ slices, etc.

BABAR Dalitz study of $D_{s}^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}$

fraction %

10.1±1.5±1.1

 $1.7 \pm 0.5 \pm 1.0$

 $2.3\pm0.8\pm1.9$

83.0±0.9±1.9

Results

Total 97.2±3.7±3.8 x2/dof=437/(422-64)=1.2

Phase (rad)

 $1.1 \pm 0.1 \pm 0.2$

 $4.1\pm0.2\pm0.5$

0 (fixed)

Amplitude

1.0 (fixed)

 $1.2\pm0.3\pm1.0$

 $0.19 \pm 0.02 \pm 0.12$

Additional resonances ($\omega(780)$, $f'_2(1525)$) do not improve fit Also measure: $\frac{B(D_s^+ \rightarrow \pi^+\pi^-\pi^+)}{D(D_s^+ \rightarrow \pi^+\pi^-\pi^+)} = 0.199 \pm 0.004 \pm 0.009$

$$B(D_s^+ \to K^+ K^- \pi^+$$

Decay Mode

 $f_2(1270)\pi^+$

ρ(770)π⁺

S-wave

ρ(1450)π⁺

BABAR Study of $D^0 \rightarrow (\omega/\phi/K^*)\eta$

 1.9 GeV/c^2

Cabibbo-suppressed vector-pseudoscalar decays Singly Cabibbo-suppressed $D^0 \rightarrow (\varphi, \omega)\eta$ Doubly Cabibbo-suppressed $D^0 \rightarrow K^{*0}\eta$ Very little information on these decays. Only Belle measurement of $D^0 \rightarrow \varphi\eta$ [1] D^* tagged, $\phi \rightarrow KK, \eta \rightarrow \gamma\gamma$ 31.1 ± 9.8 events, 78 fb⁻¹ data $BF = (1.4 \pm 0.5) \times 10^{-4}$

the second second		
Mode	Theory [2] BFx10 ⁻³	Theory [3] BFx10 ⁻³
ωη	1.0 & 1.3	1.4 ± 0.09 & 1.27 ± 0.09
φη	0.34 & 0.35	0.93 ± 0.09 & 1.4 ± 0.1
K* ⁰ η	0.030 & 0.041	0.038 ± 0.009 & 0.037 ± 0.004

[1] O. Tajima, Phys. Rev. Lett 92, 101803 (2004)
[2] Y. Wu, M. Zhong, Y. Zhou, Eur. Phys. J. C42, 391 (2005)
[3] B. Bhattacharya and J. Rosner, arXiv:0812.3167v1 [hep-ph]

Richard Kass

Study of $D^0 \rightarrow (\omega/\phi/K^*)\eta$

Selection Criteria Summary

*Use 467 fb⁻¹ of BaBar data (on and off Y(4S)) About 1 billion produced D mesons in sample *Use $D^{*+} \rightarrow D^{0}\pi^{+}$ to reduce backgrounds *Particle ID on kaons and pions *D⁰ mass window *Cuts on vector meson decay angles: helicity angle + Dalitz plot helicity angle for $\omega \rightarrow \pi^+ \pi^- \pi^0$ (next slide) *Use $\eta \rightarrow \gamma \gamma$ *Fit $\Delta M = M(D^{*+}) - M(D^{0})$ with unbinned extended Maximum likelihood ΔM gives better signal resolution than M(D)

Richard Kass

EPS 2009

Study of $D^0 \rightarrow (\omega/\phi/K^*)\eta$

Monte Carlo Studies

MC: red: signal MC, yellow: $c\bar{c}$, green: uds, blue/brown: B-meson MC background normalized to data luminosity, signal uses theory estimates for BFs. Fit $\Delta M=M_{D*}-M_{D}$ with an extended maximum likelihood fit

We do not perform a Dalitz analysis so we can not isolate contributions from other final states: $D^0 \rightarrow a_0(980)K, a_0(980) \rightarrow \eta\pi$ $D^0 \rightarrow f_0(980)\pi, f_0(980) \rightarrow KK.$ Use notation $(K^+K^-)_{\phi}$ to indicate mass region $(1.011 < M(K^+K^-) < 1.030) \text{ GeV/c}^2$ Use notation $(K^+\pi^-)_{K^*0}$ to indicate mass region $(0.841 < M(K^+\pi^-) < 0.946) \text{ GeV/c}^2$ Mis-ID studies show that swapped $K-\pi$ ID is a very small background

Fits to Data

 ΔM fits use unbinned extended maximum likelihood function Data + MC studies: no peaking backgrounds from other D's

Large signals in each mode

BA	BAR Stuc	ly of D ⁰ -	→(ω/φ/K*)η	US	
	Preliminary Branching Fractions				
	$BF = \frac{1}{L \times \sigma_{c\bar{c}}} \rightarrow 0$	$\frac{D^{*+}X \times BF_{D^{*+} \to D^0 \pi^+}}{D^{*+} \to D^0 \pi^+}$	$\times BF_{V \to X} \times BF_{\eta \to \eta \gamma} \times \varepsilon$		
Branc	hing fractions cald	culated using CL	EO's input parameter	value	
D* cro	oss section: —		$\sigma_{c\bar{c}\to D^{*+}X}$	$583 \pm 8 \pm 33 \pm 14 \text{ (pb)}$	
M. Artuso	et al, "Charm Meson Spectra i	n e+e ⁻ Annihilation at 10.5 (GeV CME." $BF_{D^{*+} \rightarrow D^0 \pi^+}$	$67.7 \pm 0.5\%$	
	Phys. Rev. D70, 112001 (2004)		$BF_{\eta \to \gamma\gamma}$	$39.38 \pm 0.26\%$	
Correc	Correct for differences between CLEO's $BF_{\eta \to \pi^+\pi^-\pi^0}$ $22.7 \pm 0.4\%$			$\frac{22.7 \pm 0.4\%}{49.2 \pm 0.6\%}$	
maasu	$\frac{BF_{\phi \to K^+K^-}}{BF_{\psi \to K^+K^-}} = \frac{49.2 \pm 0.0\%}{89.1 \pm 0.7\%}$			$\frac{49.2 \pm 0.0\%}{89.1 \pm 0.7\%}$	
measu	measured D momentum spectrum α $\frac{BF_{\omega \to \pi^+\pi^-\pi^0}}{BF_{K^* \to K^+\pi^-}} = \frac{0.1 \pm 0.170}{2/3}$			2/3	
the Bo	the BaBar's Monte Carlo $BF_{\pi^0 \rightarrow \gamma\gamma} = 98.798 \pm 0.032\%$			$98.798 \pm 0.032\%$	
~4% correction in efficiency					
L=467	'.1 fb ⁻¹				
. (Mode	N _{obs}	BFx 10-3		
	D ⁰→ωη	4450 ± 103	2.21 ± 0.08 ± 0	.22	
	D ⁰ →(K⁺K⁻) _φ η	513 ± 26	$0.21 \pm 0.01 \pm 0.02$		
	D ⁰ →(K⁺π⁻) _{K*} η	177 ± 37	0.048± 0.010 ±	0.004	
Richa	urd Kass	EPS 20	09 Stat	syst 14	

14

Precision measurement of RD relative to D+

 $\begin{array}{l} \mbox{Precision measurement of BR relative to } D^{+}{}_{s} \rightarrow K^{+}K^{-}\pi^{+} \\ \hline B(D^{+}_{s} \rightarrow \pi^{+}\pi^{-}\pi^{+}) \\ \hline B(D^{+}_{s} \rightarrow K^{+}K^{-}\pi^{+}) \\ \hline CLEO_c: \ 0.202 \pm 0.011 \pm 0.009 \ (\mbox{PRL 100 161804 (2008)}) \\ \hline PDG08 \ : \ 0.265 \pm 0.041 \pm 0.031 \end{array}$

Summary & Conclusions-II

Study of $D^0 \rightarrow (\omega/\phi/K^*)\eta$

Mode	Ref [2]x10 ⁻³	Ref [3] × 10 ⁻³	N _{obs}	preliminary <mark>BaBar BFx 10⁻³</mark>
D ⁰→ωη	1.3 & 1.0	1.4 ± 0.09 & 1.27±0.09	4450±103	2.21 ± 0.08 ± 0.22
D ⁰ →(K⁺K) _φ η	0.35 & 0.34	0.93±0.09 & 1.4±0.1	513 ± 26	0.21 ± 0.01 ± 0.02
D ⁰ →(K⁺π⁻) _{K*} η	0.03& 0.041	0.038±0.004 & 0.037±0.004	177 ± 37	0.048 ±0.010± 0.004

1st observation of D⁰→ωη & D⁰→(K⁺π⁻⁾_{K^{*}}η

BF($\omega\eta$) larger than predicted BF($\phi\eta$) higher than Belle ((1.4 ± 0.5) × 10⁻⁴) but within 2 σ both measurements inconsistent (smaller) with predictions BF(K^{*0} η) within 1 σ of theoretical predictions Future work for publication Isolating K^{*0} and ϕ within signal region Using D⁰ \rightarrow K⁻ π ⁺ as the normalization mode instead of CLEO result This will reduce systematic errors

STATE OF STATE

Extra slides

Introduction

PEP-II was a great accelerator

Richard Kass

EPS 2009

BaBar K/π ID

Selection Criteria Summary Use 467 fb⁻¹ of BaBar data (on and off Y(45))

- About 1 billion D mesons in sample
- Use $D^{*+} \rightarrow D^0 \pi^+$ to reduce backgrounds
- D* momentum cut gets rid of D mesons from B decays
- Slow pion and D*_{CMS} momenta cuts
- Slow pion beam spot fit probability > 0.01
- Particle ID on kaons and pions
- D^o mass window
- Cuts on vector meson:
- helicity angle + Dalitz plot helicity angle for $\omega \rightarrow \pi^+\pi^-\pi^0$ (next slide) mass window
- minimum momentum
- Use $\eta \rightarrow \gamma \gamma$
- Photons from η have a minimum momentum requirement
- Fit $\Delta M = M(D^{*+}) M(D^{0})$ with unbinned extended Max likelihood ΔM gives better signal resolution than M(D)

Study of $D^0 \rightarrow (\omega/\phi/K^*)\eta$

Complete Selection Criteria

Variable	$D^0 \to (K^+ K^-)_\phi \eta$	$D^0 o \omega \eta$	$D^0 \to (K^+\pi^-)_{K^{*0}}\eta$
signal Region (GeV/ c^2)	$0.1442 < \Delta M < 0.1467$	$0.1438 < \Delta M < 0.1470$	$0.1444 < \Delta M < 0.1465$
$\mathrm{m}(D^0)~(\mathrm{GeV}/c^2)$	$1.851 < m_{D^0} < 1.877$	$1.826 < m_{D^0} < 1.895$	$1.845 < m_{D^0} < 1.885$
D^{*+} CMS momentum (GeV/c)	$2.6 < P_{D^{*+}}^{*}$	$2.76 < P_{D^{*+}}^{*}$	$2.6 < P_{D^{*+}}^*$
π_{slow} I.P. χ^2 fit prob	$0.01 < P(\chi^2)$	$0.01 < P(\chi^2)$	$0.01 < P(\chi^2)$
Resonance Mass (GeV/ c^2)	$1.011 < m_{\phi} < 1.030$	$0.758 < m_{\omega} < 0.798$	$0.841 < m_{K^*} < 0.946$
$\eta \text{ CMS momentum } (\text{GeV}/c)$	$0.7 < P_\eta^*$	$0.45 < P_\eta^*$	$0.455 < P_\eta^*$
$\gamma_1 \text{ CMS momentum}(\text{ GeV}/c)$	$0.184 < P^*_{\gamma_1}$	$0.15 < P_{\gamma_1}^*$	$0.16 < P^*_{\gamma_1}$
$\gamma_2 \text{ CMS momentum}(\text{ GeV}/c)$	$0.138 < P^*_{\gamma_2}$	$0.15 < P_{\gamma_2}^*$	$0.16 < P^*_{\gamma_2}$
D^{*+} fit χ^2 prob	$0.0005 < P(\chi^2)$	$0.0005 < P(\chi^2)$	$0.0005 < P(\chi^2)$
D^0 CMS momentum (GeV/c)	$2.5 < P_{D^0}^*$	-	-
helicity	$0.322 < \cos \theta_H $	$0.6 < cos heta_H $	$cos \theta_H < -0.4$ or $cos \theta_H > 0.44$
Dalitz	_	$-0.5 < cos \theta_D < 0.5$	-
kaon PID	-	-	Stringent PID selection criteria

Study of $D^0 \rightarrow (\omega/\phi/K^*)\eta$

Systematic Errors

Systematic	$D^0 \rightarrow (K^+ K^-)_{\phi} \eta \ (\%)$	$D^0 \to \omega \eta \ (\%)$	$D^0 \to (K^+ \pi^-)_{K^{*0}} \eta \ (\%)$
Tracking	0.40	0.40	0.40
Particle ID	2.1	0.87	1.6
$\pi^0 + \eta$	3.2	6.2	3.2
Background PDF	0.7	0.5	1.4
Signal PDF	2.0	3.0	3.0
Selection Criteria	3.0	3.0	3.0
Integrated luminosity	1.0	1.0	1.0
Subtotal	5.4	7.7	5.8
$e^+e^- \rightarrow D^*$ X-section [10]	5.7	5.7	5.7
P_{D^*} correction	2.0	2.0	2.0
Total	8.1	9.8	8.4

Systematic errors are added in quadrature

Mode	BFx10-3
D ⁰ →ωη	2.21 ± 0.08 ± 0.22
D ⁰ →(K⁺π⁻) _{K*} η	0.048 ± 0.01 ± 0.004
D ⁰ →(K⁺K⁻) _φ η	0.21 ± 0.01 ± 0.02