

Hadronic decays of the D/D_s

David H. Miller Purdue University (CLEO collaboration)

European Physical Society International Conference on High Energy Physics

July 16th – 22nd 2009, Krakow, Poland

This talk

This Talk

CLEO-c results

•818pb⁻¹ at the Ψ(3770) taken just above DD threshold
•586 pb⁻¹ taken at 4170 MeV to maximize D_s production

Inclusive hadron yields from D_s decays D^0 , D^+ , D_s exclusive decays to two pseudoscalars D_s exclusive decays involving the ω Dalitz plot analysis of $D_s \rightarrow K^+K^-\pi^+$

arXiv:0904.2417v1 [hep.ex] arXiv:0906.3198v1 [hep-ex] arXiv:0906.2138v1 [hep-ex] arXiv:0903.1301 [hep-ex] PRD 79, 072008 (2009)

Data and detector

818pb⁻¹

 e⁺e⁻ →Ψ(3770) → DD
 produced at threshold, no extra particles.
 10-20% of all D⁰ and D⁺ are fully reconstructed in clean modes.

586pb⁻¹

e⁺e⁻ → D_s*+D_s⁻ at 4170 MeV includes a photon or π⁰ from D_s* decay. 6% of all D_s⁺ are fully reconstructed in clean modes.

Events are very clean. The detector covers 93% of 4π and excellent photon detection

8/6/2009

Inclusive hadron yields from D_s decays $e^+e^- \rightarrow D_s^- D_s^{*+} \rightarrow D_s^- D_s^+ \gamma$ or $D_s^+ D_s^{*-} \rightarrow D_s^+ D_s^- \gamma$

Reconstruct D_s^- Compute the recoil mass select ± 55 MeV of PDG mass

$$M_{recoil}(D_s) = \sqrt{(E_0 - E_{Ds})^2 - (p_0 - p_{Ds})^2}$$

Compute M_{recoil} from $D_s^-\gamma$ $M_{recoil}(D_s\gamma) = \sqrt{(E_0 - E_{Ds} - E_{\gamma})^2 - (p_0 - p_{Ds} - p_{\gamma})^2}$ select ± 30 MeV from PDG mass

Total of 18586 ± 163 tags full data set 586pb⁻¹

Inclusive hadron yields from D_s decays <u>arXiv:0904.2417</u>

Inclusive K and π yields from D_s decays

Subtract a variety of backgrounds e.g. π^{+-0} from K_s^{0} , Misidentification $\pi \rightarrow K$ and $K \rightarrow \pi$

Use particle ID both dE/dx and RICH E/p for electron ID

Use D_s sideband subtraction

8/6/2009

Inclusive $\eta \eta' \phi \omega$ yields from D_s decays

8/6/2009

Inclusive hadron yields from D_s decays

D_s inclusive yield results.

Mode	$\operatorname{Yield}(\%)$	K_L^0 Mode	$\operatorname{Yield}(\%)$	$\mathcal{B}(\mathrm{PDG})(\%)$
$D_s^+ \to \pi^+ X$	$119.3 \pm 1.2 \pm 0.7$			
$D_s^+ \rightarrow \pi^- X$	$43.2\pm0.9\pm0.3$			
$D_s^+ \to \pi^0 X$	$123.4 \pm 3.8 \pm 5.3$			
$D_s^+ \to K^+ X$	$28.9\pm0.6\pm0.3$			$20 \ ^{+}_{-} \ ^{18}_{14}$
$D_s^+ \rightarrow K^- X$	$18.7\pm0.5\pm0.2$			$13 \ {}^+_{-} \ {}^{14}_{12}$
$D_s^+ \to \eta X$	$29.9\pm2.2\pm1.7$			
$D_s^+ \to \eta' X$	$11.7\pm1.7\pm0.7$			
$D_s^+ \to \phi X$	$15.7\pm0.8\pm0.6$			
$D_s^+ \to \omega X$	$6.1\pm1.4\pm0.3$			
$D_s^+ \to f_0(980)X, f_0(980) \to \pi^+\pi^-$	1 < 1.3% (90% CL)			
$D_s^+ \rightarrow K_S^0 X$	$19.0\pm1.0\pm0.4$	$D_s^+ \to K_L^0 X$	15.6 ± 2.0	20 ± 14
$D_s^+ \rightarrow K_S^0 K_S^0 X$	$1.7 \pm 0.3 \pm 0.1$	$D_s^+ \to K_L^0 K_S^0 X$	5.0 ± 1.0	
$D_s^+ \to K_S^0 K^+ X$	$5.8\pm0.5\pm0.1$	$D_s^+ \rightarrow K_L^0 K^+ X$	5.2 ± 0.7	
$D_s^+ \rightarrow K_S^0 K^- X$	$1.9\pm0.4\pm0.1$	$D_s^+ \to K_L^0 K^- X$	1.9 ± 0.3	
$D_s^+ \rightarrow K^+ K^- X$	$15.8\pm0.6\pm0.3$			
$D_s^+ \to K^+ K^+ X$	< 0.26% (90% CL)			
$D_s^+ \to K^- K^- X$	< 0.06% (90% CL)			

K⁰_L modes are those with a single K⁰_L found by missing mass

Gronau and Rosner arXiv:0903.2287 use measured branching ratios and an isospin statistical model to determine the exclusive channel contributions to inclusive π , K, η , η' , ϕ , ω

8/6/2009

Quark Level Production Mechanisms

Inclusive hadronic decays can be produced by a variety of mechanisms. Including:

(a) CF → ηX, η'X, φX and KKX
(b) CS → KX
(c) CS → KηX, Kη'X, KφX
(d) DCS → KKX
(e,f) Annihilation → no strange

 W^{+} W^{*} in $\overline{\mathbf{S}}$ (b) (a) W^+ W^{+} m S (**c**) (d) W^+ ᠕᠕᠕᠕ Coorecorecore للككك

Use the data to find the contribution of the annihilation processes

EPS 2009 July 16th – 22nd ,2009

(e)

(f)

1850309-004

Fit to the Quark Level Production

In order to determine the contributions of specific diagrams the four branching ratios resulting in ss production are used as free parameters in a global fit

 $\boldsymbol{B}(\boldsymbol{s}\boldsymbol{\overline{s}}) = \boldsymbol{B}\left(\boldsymbol{\eta}\right) + \boldsymbol{B}\left(\boldsymbol{\eta}'\right) + \boldsymbol{B}\left(\boldsymbol{\phi}\right) + \boldsymbol{B}\left(\mathrm{KK}\right).$

The s quark-level final state B(s) is not adjusted in the fit, but is included as

$$\boldsymbol{B}(\overline{s}) = \boldsymbol{C}_1 \times |\boldsymbol{V}_{cd}/\boldsymbol{V}_{cs}|^2 \times \boldsymbol{B}(\overline{ss}),$$

where C_1 is a correction factor which is taken to be 1.25±0.25. The sss final state has 4 separate pieces and these are not adjusted but included in the fit with C_2 taken to be 0.75 ± 0.25.

$$\begin{split} \boldsymbol{\mathcal{B}}(\boldsymbol{\eta}\overline{\boldsymbol{s}}) &= \boldsymbol{C}_{2} \times |\boldsymbol{V}_{us}/\boldsymbol{V}_{ud}|^{2} \times \boldsymbol{\mathcal{B}}(\boldsymbol{\eta}) \\ \boldsymbol{\mathcal{B}}(\boldsymbol{\eta}'\overline{\boldsymbol{s}}) &= \boldsymbol{C}_{2} \times |\boldsymbol{V}_{us}/\boldsymbol{V}_{ud}|^{2} \times \boldsymbol{\mathcal{B}}(\boldsymbol{\eta}') \\ \boldsymbol{\mathcal{B}}(\boldsymbol{\phi}\overline{\boldsymbol{s}}) &= \boldsymbol{C}_{2} \times |\boldsymbol{V}_{us}/\boldsymbol{V}_{ud}|^{2} \times \boldsymbol{\mathcal{B}}(\boldsymbol{\phi}) \\ \boldsymbol{\mathcal{B}}(\boldsymbol{K}\overline{\boldsymbol{K}}\overline{\boldsymbol{s}}) &= \boldsymbol{C}_{2} \times |\boldsymbol{V}_{us}/\boldsymbol{V}_{ud}|^{2} \times \boldsymbol{\mathcal{B}}(\boldsymbol{K}K) \end{split}$$

Finally, there are the annihilation diagrams.

B(Annihilation) = **B**($D_s^+ \rightarrow \mu^+ v$) + **B**($D_s^+ \rightarrow \tau^+ v$) + **B**($D_s^+ \rightarrow 0$ ther Annihilation). where the measured values of the leptonic decays **B**($D_s^+ \rightarrow \tau^+ v$) =(5.62 ± 0.41 ± 0.16)%, and **B**($D_s^+ \rightarrow \mu^+ v$) = (0.565 ± 0.045 ± 0.017)% are used.

8/6/2009

Results

B(ss) + **B**(sss) + **B**(s) + **B**(Annihilation) = 100%

Parameter	Value(%)		Error(%)			Errors		
		δ_1	δ_2	δ_3	δ_4	δ_5		etetictical
$\mathcal{B}(D_s \to s\bar{s} \to \eta X)$	14.7	2.9	0.2	0.2	1.0	3.7	1	Statistical C. phase space
$\mathcal{B}(D_s \to s\bar{s} \to \eta' X)$	10.3	1.7	0.2	0.1	1.0	0.1	3	C_{2} phase space
$\mathcal{B}(D_s \to s\bar{s} \to \phi X)$	15.1	1.0	0.0	0.2	0.0	0.0	4	η, η from ưū, dđ
$\mathcal{B}(D_s \to s\bar{s} \to K\bar{K}X)$	25.4	1.2	0.3	0.6	0.1	0.1	5	ηη, ηφ pair production
$\mathcal{B}(D_s \to s\bar{s})$	65.6	2.7	0.7	1.0	1.8	3.5		
$\mathcal{B}(\text{Other Annihilation})$	21.5	2.8	0.1	0.3	2.0	3.9		

The *B*(other annihilation) is substantial particularly considering that part of the annihilation process $D_s \rightarrow gluons$ will be in the ss channel

D_s , D^0 , $D^+ \rightarrow$ two pseudoscalars

arXiv:0906.3198v1 [hep-ex]

Use the full 3770 and 4170 data sets

For the D⁰ and D⁺ use the beam constrained mass and cut on ΔE and extract yields from M_{bc}

$$M_{BC} = \sqrt{E_{\text{beam}}^2 - |p(D)|^2}$$
$$\Delta E = E(D) - E_{\text{beam}}$$

For the D_s Use M_{recoil} (D_s) and M_{recoil} ($D_s + \gamma$)

Use

$$D^0 \rightarrow K^- \pi^+$$
 $D^+ \rightarrow K^- \pi^+ \pi^+$ $D_s^+ \rightarrow K_s^{0} K^+$

as reference modes to get absolute branching ratios

$D^0 \rightarrow two \ pseudoscalars$

 $M_{\rm bc}$ distributions The points are the ΔE signal region, the shaded histogram is from the ΔE sidebands, and the lines are the fit.

8/6/2009

$D^+ \rightarrow two \ pseudoscalars$

 $M_{\rm bc}$ distributions The points are the ΔE signal region, the shaded histogram is from the ΔE sidebands, and the lines are the fit.

8/6/2009

$D_s \rightarrow two \ pseudoscalars$

 $M(D_s)$ distributions for D_s modes. The points are the data and the superimposed line is the fit

D⁰ decays to two pseudoscalars

Mode	Efficiency (%)	Yield
$D^0 \rightarrow K^+K^-$	57.35 ± 0.16	13782 ± 136
$D^0 \rightarrow K^0_S K^0_S$	22.73 ± 0.13	215 ± 23
$D^0 \rightarrow \pi^+\pi^-$	72.68 ± 0.14	6210 ± 93
$D^0 \rightarrow \pi^0 \pi^0$	32.95 ± 0.14	1567 ± 54
$D^0 \rightarrow K^- \pi^+$	65.11 ± 0.15	150259 ± 420
$D^0 \rightarrow K_S^0 \pi^0$	28.57 ± 0.14	20045 ± 165
$D^0 \rightarrow K_S^0 \eta$	10.08 ± 0.05	2864 ± 65
$D^0 \rightarrow \pi^0 \eta$	11.97 ± 0.05	481 ± 40
$D^0 \rightarrow K_S^0 \eta'$	2.35 ± 0.02	1321 ± 42
$D^0 \rightarrow \pi^0 \eta'$	2.97 ± 0.02	159 ± 19
$D^0 \rightarrow \eta \eta$	4.35 ± 0.02	430 ± 29
$D^0 \rightarrow \eta \eta^\prime$	1.06 ± 0.01	66 ± 15

Mode	$\mathcal{B}_{\mathrm{mode}}/\mathcal{B}_{\mathrm{Normalization}}$ (%)	This result \mathcal{B} (%)	\mathcal{A}_{CP} (%)
$D^0 \rightarrow K^+ K^-$	$10.41 \pm 0.11 \pm 0.11$	$0.407 \pm 0.004 \pm 0.004 \pm 0.008$	
$D^0 \to K^0_S K^0_S$	$0.41\pm0.04\pm0.02$	$0.0160 \pm 0.0017 \pm 0.0008 \pm 0.0003$	
$D^0 \to \pi^+ \pi^-$	$3.70 \pm 0.06 \pm 0.09$	$0.145 \pm 0.002 \pm 0.004 \pm 0.003$	
$D^0 \to \pi^0 \pi^0$	$2.06 \pm 0.07 \pm 0.10$	$0.081 \pm 0.003 \pm 0.004 \pm 0.002$	
$D^0 \to K^- \pi^+$	100	3.9058 external input [2]	$0.5 \pm 0.4 \pm 0.9$
$D^0 \rightarrow K^0_S \pi^0$	$30.4 \pm 0.3 \pm 0.9$	$1.19 \pm 0.01 \pm 0.04 \pm 0.02$	
$D^0 \to K^0_S \eta$	$12.3 \pm 0.3 \pm 0.7$	$0.481 \pm 0.011 \pm 0.026 \pm 0.010$	
$D^0 \to \pi^0 \eta$	$1.74 \pm 0.15 \pm 0.11$	$0.068 \pm 0.006 \pm 0.004 \pm 0.001$	
$D^0 \to K^0_S \eta'$	$24.3 \pm 0.8 \pm 1.1$	$0.95 \pm 0.03 \pm 0.04 \pm 0.02$	
$D^0 \to \pi^0 \eta'$	$2.3 \pm 0.3 \pm 0.2$	$0.091 \pm 0.011 \pm 0.006 \pm 0.002$	
$D^0 \rightarrow \eta \eta$	$4.3 \pm 0.3 \pm 0.4$	$0.167 \pm 0.011 \pm 0.014 \pm 0.003$	
$D^0 \to \eta \eta^\prime$	$2.7 \pm 0.6 \pm 0.3$	$0.105 \pm 0.024 \pm 0.010 \pm 0.002$	

Ratios of branching fractions to the normalization mode $D^0 \rightarrow K^- \pi^+$, branching fractions, and charge asymmetries A_{CP} . Uncertainties are statistical error, systematic error, and the error from the input branching fractions of normalization modes

D⁺ decays to two pseudoscalars

	Mode	Efficiency (%	%) Yie	eld	
	$D^+ \to K^- \pi^+ \pi^+$	$54.92 \pm 0.16 \ 2$	231058 ± 515		
	$D^+ \to K^0_S K^+$	36.62 ± 0.15	5161 ± 86		
	$D^+ \to \pi^+ \pi^0$	48.69 ± 0.15	2649 ± 76		
	$D^+ \to K^0_S \pi^+$	42.54 ± 0.16	30095 ± 191		
	$D^+ \to K^+ \pi^0$	43.29 ± 0.15	343 ± 37		
	$D^+ \to K^+ \eta$	15.95 ± 0.06	60 ± 24		
	$D^+ \to \pi^+ \eta$	18.07 ± 0.06	2940 ± 68		
	$D^+ \to K^+ \eta'$	4.29 ± 0.02	23 ± 18		
	$D^+ \to \pi^+ \eta'$	4.81 ± 0.02	1037 ± 35		
Mode	$\mathcal{B}_{\mathrm{mode}}/\mathcal{B}_{\mathrm{Normalization}}$	%) '	This result	B (%)	\mathcal{A}_{CP} (%)
$D^+ \to K^- \pi^+ \pi^+$	100	9.1^{4}	400 externa	al input [2]	$-0.1 \pm 0.4 \pm 0.9$
$D^+ \to K^0_S K^+$	$3.35 \pm 0.06 \pm 0.07$	0.306 :	\pm 0.005 \pm	0.007 ± 0.007	$-0.2 \pm 1.5 \pm 0.9$
$D^+ \to \pi^+ \pi^0$	$1.29 \pm 0.04 \pm 0.05$	$0.118 \pm$	\pm 0.003 \pm	0.005 ± 0.003	$2.9 \pm 2.9 \pm 0.3$
$D^+ \rightarrow K^0_S \pi^+$	$16.82 \pm 0.12 \pm 0.37$	7 = 1.537 :	\pm 0.011 \pm	0.034 ± 0.033	$-1.3 \pm 0.7 \pm 0.3$
$D^+ \to K^+ \pi^0$	$0.19 \pm 0.02 \pm 0.01$	$0.0172 \pm$	$\pm 0.0018 \pm$	0.0006 ± 0.00	$04 - 3.5 \pm 10.7 \pm 0.9$
$D^+ \to K^+ \eta$	< 0.14 (90% C.L.)	<	< 0.013 (90	% C.L.)	
$D^+ \to \pi^+ \eta$	$3.87 \pm 0.09 \pm 0.19$	0.354 :	$\pm 0.008 \pm$	0.018 ± 0.008	$-2.0 \pm 2.3 \pm 0.3$
$D^+ \to K^+ \eta'$	< 0.20 (90% C.L.)	<	< 0.018 (90	% C.L.)	
$D^+ \to \pi^+ \eta'$	$5.12 \pm 0.17 \pm 0.25$	$0.468 \pm$	\pm 0.016 \pm	0.023 ± 0.010	$-4.0 \pm 3.4 \pm 0.3$

Ratios of branching fractions to the normalization mode $D^+ \rightarrow K^- \pi^+ \pi^+$, branching fractions, and charge asymmetries A_{CP} . There is no evidence of charge asymmetries. The third error is the error from the normalization mode.

D_s decays to two pseudoscalars

	Mode	Efficiency $(\%)$ Yield	
	$\ddot{D}_s^+ \to K_S^0 K^+$	$24.73 \pm 0.14 4076 \pm 71$	
	$D_s^+ \to \pi^+ \pi^0$	16.60 ± 0.12 19 ± 28	
	$D_s^+ \to K_S^0 \pi^+$	28.15 ± 0.14 393 ± 33	
	$D_s^+ \to K^+ \pi^0$	29.57 ± 0.14 202 ± 70	
	$D_s^+ \to K^+ \eta$	11.40 ± 0.05 222 ± 41	
	$D_s^+ \to \pi^+ \eta$	12.70 ± 0.06 2587 \pm 89	
	$D_s^+ \to K^+ \eta'$	2.87 ± 0.02 56 ± 17	
	$D_s^+ \to \pi^+ \eta'$	3.28 ± 0.02 1436 ± 47	
			(04)
Mode	$B_{\rm mode}/B_{\rm Normalization}$ (%)	This result $\mathcal{B}(\%)$	\mathcal{A}_{CP} (%)
$D_s^+ \to K_S^0 K^+$	100	1.4900 external input [3]	$4.7 \pm 1.8 \pm 0.9$
$D_s^+ \to \pi^+ \pi^0$	< 2.3 (90% C.L.)	< 0.037 (90% C.L.)	
$D_s^+ \to K_S^0 \pi^+$	$8.5 \pm 0.7 \pm 0.2$	$0.126 \pm 0.011 \pm 0.003 \pm 0.007$	$16.3 \pm 7.3 \pm 0.3$
$D_s^+ \to K^+ \pi^0$	$4.2 \pm 1.4 \pm 0.2$	$0.062 \pm 0.022 \pm 0.004 \pm 0.004$	$-26.6 \pm 23.8 \pm 0.9$
$D_s^+ \to K^+ \eta$	$11.8 \pm 2.2 \pm 0.6$	$0.176 \pm 0.033 \pm 0.009 \pm 0.010$	$9.3 \pm 15.2 \pm 0.9$
$D_s^+ \to \pi^+ \eta$	$123.6 \pm 4.3 \pm 6.2$	$1.84 \pm 0.06 \pm 0.09 \pm 0.11$	$-4.6 \pm 2.9 \pm 0.3$
$D_s^+ \to K^+ \eta'$	$11.8 \pm 3.6 \pm 0.6$	$0.18 \pm 0.05 \pm 0.01 \pm 0.01$	$6.0 \pm 18.9 \pm 0.9$

Ratios of branching fractions to the normalization mode $D_s^+ \rightarrow K_s^0 K^+$, branching fractions, and charge asymmetries A_{CP} . There is no evidence of charge asymmetries. The third error is the error from the normalization mode.

D_s exclusive decays with an ω in the final state

<u>arXiv:0906.2138v1</u> [hep-ex]

The inclusive branching fraction $D_s \rightarrow \omega X$ is (6.1 ± 1.4) % which is unexpectedly large Only exclusive mode observed prior to this analysis is $D_s \rightarrow \pi^+ \omega = (0.25 \pm 0.09)\%$

Use the 18586 ± 163 tags D_s^- in $K^0_s K^-$, $\phi \pi^-$, $K^*(892)^0 K^-$

Modes $D_s^+ \rightarrow \pi^+\pi^0\omega, \pi^+\omega, \pi^+\eta\omega, \pi^+\pi^+\omega$ $D_s^+ \rightarrow K^+\pi^0\omega, K^+\omega, K^+\eta\omega, K^+\pi^+\pi^-\omega$

 $B_{mode} = N_{mode} / N_{tag} * \epsilon_{tag} / \epsilon_{mode}$

Select events with three charged particles on the signal side either $\pi^+ \pi^- \pi^-$ or $K^-\pi^+\pi^-$

8/6/2009

$D_s^+ \rightarrow \pi^+ \pi^0 \omega, \pi^+ \omega, \pi^+ \eta \omega, \pi^+ \pi^- \omega$

The red lines show the ω region and the blue lines indicate the sideband region Signals from η and ϕ are also present.

8/6/2009

ρ production in $π^+ π^0 ω$

 $\pi^+\pi^0$ invariant mass distribution fit to the sum of phase space $\pi^+\pi^0$ and $\rho \to \pi^+\pi^{0.}$ The fit results in The fraction of $\rho\omega$ is 0.52 ± 0.30

$D_s^{+} \rightarrow K^+ \pi^0 \omega, K^+ \omega, K^+ \eta \omega, K^+ \pi^+ \pi^- \omega$

No signals are seen so upper limits set

D_s exclusive decays with an ω

Mode	$N_{\rm Sg}$	$N_{\rm Sd}$	$N_{ m Ss}$	$\epsilon_{ m DT}(\%)$
$D_s^+ \to \pi^+ \omega$	6.0	0.0	6.0 ± 2.4	4.07 ± 0.08
$D_s^+ \to \pi^+ \pi^0 \omega$	53.0	19.0	$34.0{\pm}7.9$	$1.75 {\pm} 0.04$
$D_s^+ \to \pi^+ \pi^+ \pi^- \omega$	54.0	24.8	29.2 ± 8.2	$2.64 {\pm} 0.07$
$D_s^+ o \pi^+ \eta \omega$	7.0	2.5	4.5 ± 2.9	$0.76 {\pm} 0.04$
$D_s^+ \to K^+ \omega$	3.0	2.0	1.0 ± 2.0	$3.66 {\pm} 0.08$
$D_s^+ \to K^+ \pi^0 \omega$	4.0	2.5	1.5 ± 2.3	$1.32 {\pm} 0.05$
$D_s^+ \to K^+ \pi^+ \pi^- \omega$	3.0	1.5	1.5 ± 1.9	1.72 ± 0.05
$D_s^+ \to K^+ \eta \omega$	0.0	0.0	0.0 ± 0.0	0.45 ± 0.03
Mode			Ĕ	$\mathcal{B}_{\mathrm{mode}}(\%)$
$D_s^+ \to \pi^+ \omega$			0.21 =	$\pm 0.09 \pm 0$
$D_s^+ \to \pi^+ \pi^0 \omega$	$2.78 \pm 0.65 \pm 0.25$			
$D_s^+ \to \pi^+ \pi^+ \pi^- \omega$	$1.58 \pm 0.45 \pm 0.09$			
$D_s^+ \to \pi^+ \eta \omega$	$0.85 \pm 0.54 \pm 0.06$			
			< 2.1	.3 (90% (
$D_s^+ \to K^+ \omega$			< 0.2	24 (90%)
$D_s^+ \to K^+ \pi^0 \omega$			< 0.8	32 (90%)
$D_s^+ \to K^+ \pi^+ \pi^- \omega$			< 0.5	64 (90%)
$D^+ \to K^+ n \omega$			< 0.7	79 (90% (

Total exclusive = (5.4 ± 1.0)% Which accounts for most of the inclusive (6.1 ± 1.4)%

Branching fractions and upper limits.

Dalitz plot analysis of $D^{}_s \to K^+ K^- \, \pi^+$

arXiv:0903.1301 PRD 79, 072008 (2009)

Isobar analysis of $D_s \rightarrow K^+K^- \pi^+$

586 pb⁻¹ at 4.17 GeV 14400 events (background of 15%) E687 701 signal events PLB 351, 591 (1995)

 K^{*0} (892) K^+ K^{*0} (1430) K^+ φ (1020) $π^+$ f_0 (980) $π^+$ f_0 (1710) $π^+$ f_0 (1370) $π^+$

*Breit Wigner parameterization for most resonances * Flatte parameterization for the $f_0(980)$ *a complex pole description of the kappa * add $f_0(1370) \pi^+$ (not used in E687 but required for the fit)

Measure the magnitude, phase, and fraction of the resonant contributions and limit the possible contributions of other KK and K π resonances that could appear in this decay.

Dalitz plot analysis of $D^{}_s \to K^+ K^- \, \pi^+$

 $K^{-}\pi^{+}\pi^{+}$ vs. $K^{+}\pi^{-}\pi$

Final fit contributions

Mode	Param	E687	CLEO-c
\overline{K}^{*o} (892) K^+	FF (%)	$\textbf{47.8} \pm \textbf{4.6} \pm \textbf{4.0}$	47.4 \pm 1.5 \pm 0.4
	Phase ($^{\circ}$)	o (fixed)	o (fixed)
$\overline{K}_{o}^{*o}(1430)K^{+}$	FF (%)	9.3 \pm 3.2 \pm 3.2	3.9 \pm 0.5 \pm 0.5
	Phase ($^{\circ}$)	152 \pm 40 \pm 39	146 \pm 8 \pm 8
ϕ (1020) π^+	FF (%)	39.6 \pm 3.3 \pm 4.7	42.2 \pm 1.6 \pm 0.3
	Phase ($^{\circ}$)	178 \pm 20 \pm 24	$-8\pm4\pm4$
$f_{ m o}(980)\pi^+$	FF (%)	11.0 \pm 3.5 \pm 2.6	$28.2\pm1.9\pm1.8$
	Phase ($^{\circ}$)	159 \pm 22 \pm 16	157 \pm 3 \pm 4
$f_{ m o}$ (1710) π^+	FF (%)	3.4 \pm 2.3 \pm 3.5	$3.4\pm$ 0.5 \pm 0.3
	Phase ($^{\circ}$)	110 \pm 20 \pm 17	89 \pm 5 \pm 5
$f_{ m o}$ (1370) π^+	FF (%)		$4.3\pm0.6\pm0.5$
	Phase ($^{\circ}$)	—	$53\pm5\pm6$

Major differences from E687 is the need for the $f_0(1370)$ and the $f_0(980)$ fit fraction and much smaller errors

Fit was redone adding 5 K-π⁺ and 7 K-K⁺ resonances one by one but no significant change in the fit

Mass Projections for the final fit

Summary

The detailed analysis of D and D_s decays continues at CLEO-c as well as at BaBar and Belle. (CLEO-c talks at this conference by Skwarnicki and Ricciardi, and other recent talks at CIPANP and Charm 2009)

Analysis of the full D_s data set continues including updating the hadronic decays of the D_s (published from 300pb⁻¹)

Phys.Rev.Lett.100:161804,2008

I'd like to thank my colleagues at CLEO particularly Ed Thorndike, Fan Yang and Mikhail Dubrovin