EPS – HEP 09 Krakow 16-22 July 2009

Measurement of CP violation and CKM matrix in LHCb

Marta Calvi University of Milano Bicocca and INFN

CP violation and CKM matrix

Current laboratory measurements of CPV are in agreement with SM predictions, encoded in the CKM matrix, but observation of universe requires much more. $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Unitarity relations represented by triangles.

Still space for finding effects due to NP in less constrained elements like γ and β_s angles.

UT constraints from tree measurements only →

The $B_s^0 \overline{B_s^0}$ mixing in $B_s^0 \rightarrow J/\psi \phi$

A CP violating phase arises from interference between B_s decay to J/ $\psi \phi$ directly or via mixing

$$\Phi_{\mathrm{J}/\psi\phi} \equiv \Phi \equiv -\arg(\eta_f \lambda_f) = \Phi_{\mathrm{M}} - 2\Phi_{\mathrm{D}}$$

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} = \eta_f \mathrm{e}^{-\mathrm{i}(\Phi_{\mathrm{M}} - 2\Phi_{\mathrm{D}})}$$

$$\mathbf{B}_{s} \xrightarrow{-\Phi_{D}} f = \mathbf{J}/\psi\phi$$

$$\overline{\Phi_{M}} \xrightarrow{B_{s}} \Phi_{D}$$

In the SM:

 $B_s \rightarrow J/\psi \phi$ is dominated by a single weak phase, well predicted:

$$\beta_{\rm s} = \arg \left(-\frac{V_{\rm ts} V_{\rm tb}^*}{V_{\rm cs} V_{\rm cb}^*} \right)$$

$$\beta_{\rm s} = \eta \lambda^2 + \mathcal{O}(\lambda^4)$$

$$(\text{sb}) \qquad V_{\rm ts} V_{\rm tb}^* \sim \mathcal{O}(\lambda^2)$$

$$\beta_{\rm s} = \eta \lambda^2 + \mathcal{O}(\lambda^4)$$

estimated ~10⁻⁴-10⁻³

from UT fits

```
-2\beta_{\rm s} = (-0.037 \pm 0.002) rad
```

.**I/w**ø

$B_{s}^{0}\overline{B}_{s}^{0}$ with New Physics

New particles could contribute to the B_s-B_s box diagram modifying the SM prediction, adding a new phase :

$$M_{12}^{\rm tot} = M_{12}^{\rm SM} \Delta_{\rm s} = M_{12}^{\rm SM} |\Delta_{\rm s}| e^{i\phi_{\rm s}^{\Delta}}$$

$$\Phi_{\mathrm{J/}\psi\phi} = \Phi^{\mathrm{SM}} + \phi_{\mathrm{s}}^{\Delta}$$

This new phase

$$\phi_{\rm s}^{\Delta} \quad \text{will also modify other measurements:}$$

$$\Delta \Gamma_{\rm s}^{\rm meas} = 2|\Gamma_{12}^{\rm SM}| \cos(\Phi_{\rm M/\Gamma}^{\rm SM} + \phi_{\rm s}^{\Delta})$$

$$a_{\rm fs}^{\rm meas} = \frac{|\Gamma_{12}^{\rm SM}|}{|M_{12}^{\rm SM}|} \frac{\sin(\Phi_{\rm M/\Gamma}^{\rm SM} + \phi_{\rm s}^{\Delta})}{|\Delta_{\rm s}|}$$

where:

 $\Phi_{\mathrm{M}/\Gamma}^{\mathrm{SM}} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)^{\mathrm{SM}}$

is calculated in the SM:

$$\Phi_{\mathrm{M/\Gamma}}^{\mathrm{SM}} = (3.40^{+1.32}_{-0.77}) \times 10^{-3}$$

$B_s^0 \rightarrow J/\psi(\mu\mu)\phi(KK)$

P→VV decay : mixture of CP-even (ℓ=0,2) and CP odd (ℓ=1) final states. An angular analysis allows to separate statistically the decay amplitudes.

3 angles $\Omega = (\theta, \phi, \psi)$ to describe the final decay products directions.

Differential decay rate:

			k=1
		Bs	Bs
k	$h_k(t)$	$\bar{h_k}(t)$	$f_k(heta,\psi,arphi)$
1	$ A_0(t) ^2$	$ \bar{A}_0(t) ^2$	$2\cos^2\psi(1-\sin^2 heta\cos^2arphi)$
2	$ A_{ }(t) ^2$	$ \bar{A}_{ }(t) ^2$	$\sin^2\psi(1-\sin^2\theta\sin^2\varphi)$
3	$ A_{\perp}(t) ^2$	$ ar{A}_{\perp}(t) ^2$	$\sin^2\psi\sin^2 heta$
4	$\Im\{A^*_{ }(t)A_{\perp}(t)\}$	$\Im\{\bar{A}^*_{ }(t)\bar{A}_{\perp}(t)\}$	$-\sin^2\psi\sin2 heta\sinarphi$
5	$\Re\{A_0^*(t)A_{ }(t)\}$	$\Re\{\bar{A}_{0}^{*}(t)\bar{A}_{ }(t)\}$	$rac{1}{\sqrt{2}}\sin 2\psi \sin^2 heta \sin 2\varphi$
6	$\Im\{A_0^*(t)A_{\perp}(t)\}$	$\Im\{ar{A}^*_0(t)ar{A}_\perp(t)\}$	$\frac{1}{\sqrt{2}}\sin 2\psi\sin 2\theta\cos \varphi$

 $\frac{d^4\Gamma(B^0_s \to J/\psi\phi)}{dt \, d\cos\theta \, d\phi \, d\cos\psi} \equiv \frac{d^4\Gamma}{dt \, d\Omega} \propto \sum_{k=1}^{6} h_k(t) f_k(\Omega)$

 $A_0(0) \rightarrow CP$ even $A_{||}(0) \rightarrow CP$ even $A_{\perp}(0) \rightarrow CP$ odd

Time dependent decay amplitudes

$$\begin{split} |A_{0}(t)|^{2} &= |A_{0}(0)|^{2} e^{-\Gamma_{s}t} \Big[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \cos\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\Phi \sin(\Delta m_{s}t) \Big] \\ |A_{\parallel}(t)|^{2} &= |A_{\parallel}(0)|^{2} e^{-\Gamma_{s}t} \Big[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \cos\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\Phi \sin(\Delta m_{s}t) \Big] \\ |A_{\perp}(t)|^{2} &= |A_{\perp}(0)|^{2} e^{-\Gamma_{s}t} \Big[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \cos\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\Phi \sin(\Delta m_{s}t) \Big] \\ \Im\{A_{\parallel}^{*}(t)A_{\perp}(t)\} &= |A_{\parallel}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t} \Big[-\cos(\delta_{\perp} - \delta_{\parallel})\sin\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_{s}t) - \cos(\delta_{\perp} - \delta_{\parallel})\cos\Phi \sin(\Delta m_{s}t) \Big] \\ \Re\{A_{0}^{*}(t)A_{\parallel}(t)\} &= |A_{0}(0)||A_{\parallel}(0)|e^{-\Gamma_{s}t}\cos\delta_{\parallel} \Big[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \cos\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\Phi \sin(\Delta m_{s}t) \Big] \\ \Im\{A_{0}^{*}(t)A_{\perp}(t)\} &= |A_{0}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t} \Big[-\cos\delta_{\perp}\sin\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\delta_{\perp}\cos(\Delta m_{s}t) \Big] \\ \Im\{A_{0}^{*}(t)A_{\perp}(t)\} &= |A_{0}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t} \Big[-\cos\delta_{\perp}\sin\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\delta_{\perp}\cos(\Delta m_{s}t) \Big] \end{split}$$

High sensitivity to small Φ values when B/B initial state is determined by Flavour tagging (Δm_s terms)

Depend on 8 physics parameters: $\Phi, \Gamma_s, \Delta\Gamma_s, \Delta m_s, R_{\perp}, R_{\parallel}, \delta_{\perp}, \delta_{\parallel}$ From Tevatrons results:

 Δm_s well measured, hints of deviation from SM in Φ

$$\begin{split} \Phi &= \Phi^{\text{SM}} + \phi_{\text{s}}^{\Delta} \\ \Gamma_{\text{s}} &= \frac{\Gamma_{\text{L}} + \Gamma_{\text{H}}}{2} \\ \Gamma_{\text{s}} &= \frac{\Gamma_{\text{L}} + \Gamma_{\text{H}}}{2} \\ \Delta \Gamma &= \Gamma_{\text{L}} - \Gamma_{\text{H}} \\ \Delta m_{\text{s}} &= M_{\text{H}} - M_{\text{L}} \\ \end{split} \\ \end{split} \\ \begin{aligned} R_{\parallel} &= \frac{|A_{\parallel}(0)|^{2}}{|A_{\perp}(0)|^{2} + |A_{\parallel}(0)|^{2} + |A_{0}(0)|^{2}} \\ \frac{\delta_{\perp} = \arg(A_{\perp}(0)A_{0}^{*}(0))}{\delta_{\parallel} = \arg(A_{\parallel}(0)A_{0}^{*}(0))} \\ \end{split}$$

LHCb @ LHC

High b production in pp collisions at $\sqrt{s=14TeV}$

 $\sigma_{inel} = 80 \text{ mb}$ $\sigma_{bb} = 500 \text{ }\mu\text{b} \rightarrow \text{N} \sim 10^{12} \text{ }b\overline{\text{b}} \text{ }events \text{ in } \text{L}_{int} = 2 \text{ }fb^{-1}$ (1 nominal year 10⁷ s at 2x10³² cm⁻²s⁻¹) ~40% in the forward region

LHCb single arm forward detector

Detector ready and operational TED data June 2009 (secondary particles downstream LHC beam stopper)

bb angular

orrelation in pp

collisions at $\sqrt{s=14}$ TeV

$B_{s}^{0} \rightarrow J/\psi(\mu\mu)\phi(KK) \text{ reconstruction}$

Full MC simulation all trigger levels included:

HEP 2009 - M.Calvi

117 k	Signal yield (2 fb ⁻¹)
0.5	B(long-lived) /S
1.6	B(prompt J/ψ) /S

Figh efficiency for di-muon trigger ϵ_{tot} ~70%

Baseline event selection is lifetime-unbiased:

- small proper time and angular acceptance corrections needed.
- > High background from prompt J/ ψ : harmless in β_s fit, can allow the determination of proper time resolution.
- > Alternative analysis under study: higher statistic sensitivity.

Large use of control channels: Measure resolution and acceptance for proper time and angular distributions. Flavour tagging

Channel	Yield (2 fb ⁻¹)	B/S total
$B_d \rightarrow J/\psi K^*$	490 k	6.7
$B_u \rightarrow J/\psi K+$	940 k	1.9
$B_s \rightarrow D_s \pi$	~70k	0.4

Flavour Tagging

From combination of several methods (electron, muon, kaon, inclusive vertex, same side kaon)

Tagger	Tag eff.	mistag	ε(1–2ω) ²
Opposite side	45%	36.5%	3.3%
+ same side	56%	33.3%	6.2%

Calibration and validations on control channels

B⁰→J/ ψ (µµ)K*(Kπ) oscillations for opposite side taggers

 B_s → D_s (KKπ) π oscillations for same side tagger

$B_s^0 \rightarrow J/\psi \phi$: fits results

COS 8	φ	Parameter	Result	Units
1400		$m_{ m B_s}$	5368.01 ± 0.05	MeV/c^2
		$f_{m,1}^{s}$	0.47 ± 0.13	
		$\sigma_{m,1}^{s}$	12.0 ± 0.7	MeV/c^2
600	600	$\sigma_{m,2}^{s}$	19.0 ± 1.3	MeV/c^2
400	400	$ A_0(0) ^2$	0.599 ± 0.002	
200	200	$ A_{\perp}(0) ^2$	0.162 ± 0.004	
0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 cosθ	$0 \frac{1}{3} \frac{1}{2} -2 -1 0 1 2 3$	δ_{\parallel}	2.49 ± 0.02	rad
Cos ψ	proper time t + data signal	$\delta_{\perp}^{"}$	-0.28 ± 0.10	rad
2000 - 1800	fitted sig. lh.	$-2\beta_{\rm s}$	-0.0399 ± 0.0272	rad
1600	10 ¹ cp-odd sig. lh.	$\Gamma_{\rm s}$	0.686 ± 0.004	$\rm ps^{-1}$
1200		$\Delta\Gamma_{\rm s}$	0.061 ± 0.010	ps^{-1}
800		$f_{t,1}^{\mathrm{s}}$	0.96 ± 0.01	
		$\sigma_{t,1}^{s}$	0.032 ± 0.001	\mathbf{ps}
		$\sigma_{t,2}^{s}$	0.12 ± 0.01	\mathbf{ps}
^U -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 C06ψ 	-2 0 2 4 6 8 10 proper time t [ps]	$\Delta m_{ m s}$	19.96 ± 0.04	\mathbf{ps}

Sensitivity studies with 2fb⁻¹ (one nominal year) : σ(2β_s) ~0.03
 Good convergence for all physics parameters, all "detector parameters" can also be fitted

• Systematics: Angular distortions (± 5%) Proper time resolution (40 ± 4 fs) Mistag rate (0.34 ± 0.01)

$$\begin{array}{c}
7\% \\
5\% \\
7\%
\end{array}
- \Delta\beta_{s}/\beta_{s}
\end{array}$$

Ignoring a possible 5-10% S-wave contamination will introduce a ~15% bias on β_s . Included in the fit will reduce the resolution ~20% but allows $cos2\beta_s$ measurement $_{10}$ HEP 2009 - M.Calvi

Sensitivity versus integrated Luminosity

First important results can come already from 2010 running.

If true β_s value is the current Tevatron measurement (NP-like) we should measure it from $B_s \rightarrow J/\psi(\mu\mu)\phi$ with 200 pb⁻¹!

With 10 fb⁻¹ > 3σ evidence of non-zero β_s even if only SM. Other channels also under study: $B_s \rightarrow J/\psi(ee)\phi$, $B_s \rightarrow J/\psi\eta$, $B_s \rightarrow D_s^+D_s^- \dots$

$sin(2\beta)$ with $B^0 \rightarrow J/\psi(\mu\mu)K_S(\pi\pi)$

Will be the first time dependent CP asymmetry measurement at LHCb: with 200 pb⁻¹ expect $\sigma(sin2\beta) \sim 0.06$

Channel	Signal yield (2 fb ⁻¹)	B/S		
$B_d \rightarrow J/\psi K_S$	94 k	0.6		
σ (sin2 β)~0.020 in 2 fb⁻¹				

With additional luminosity will give insight into possible NP contributions to $b \rightarrow c\overline{c}s$. Will also constrain direct CP asymmetry.

NP from $b \rightarrow s\bar{s}s$ penguin decays

Good	persp	ective at l	_HCb for	$B_{a} \rightarrow \phi \phi$.
				S 1 1 1

		· · · ·
Channel	Yield (2 fb ⁻¹)	B/S (90% CL)
$B_s \rightarrow \phi \phi$	3100	< 0.8
$B_d \rightarrow \phi K_S$	920	< 1.1

Time dependent analysis of angular distribution of flavour tagged events: $\sigma_{\text{stat}} (\phi_{\text{Bs} \rightarrow \phi \phi}^{\text{NP}}) = 0.11 \text{ in 2 fb}^{-1}$

From $B_d \rightarrow \phi K_S$ expect $\sigma(sin 2\beta_{eff}) \approx 0.23$

γ measurements

• Many approaches to γ angle measurements. Most powerful through 'B->DK' strategies (<u>ch</u>arged and neutral B modes). D final state is common to D⁰ and D⁰.

Many possibilities for D final states: K π , KK, $\pi\pi$, K $\pi\pi\pi$, K_S $\pi\pi$...

 Opportunity for LHCb to make a contribution already with 200 pb⁻¹ : expect ~10k events B→D(hh)K.

• Dalitz plot analysis giving currently the single best γ results: LHCb will reconstruct in B \rightarrow D(K_S $\pi\pi$)K ~6.800 events /2 fb⁻¹ with B/S<1.5 90%CL.

• $B_s \rightarrow D_s K$ time dependent CP asymmetry is unique to LHCb: exploit good PID for separation from $B_s \rightarrow D_s \pi$ and excellent proper time resolution.

Global fit to all measurements of γ from tree decays only : $\sigma(\gamma) \sim 4^{\circ}$ with 2 fb⁻¹

More details in poster session: M. Gersabeck

Conclusions

- LHCb detector is on place and operational, ready for data taking at LHC start-up.
- $2\beta_s$ value could bring good news for NP: first LHCb results could come already from 2010 running. Expected sensitivity ~0.03/ 2 fb⁻¹
- Extensive LHCb program includes studies on many hadronic channels for measurements on all CKM matrix parameters, as well as searches for rare decays.
- First year data will also provide a lot of inclusive measurements and studies on control channels.
- In the coming years LHCb results will finally provide a strong improvement to flavour physics, in particular to the knowledge of the B_s sector.

BACKUP

Angular acceptance checks with $B^0 \rightarrow J/\psi K^*$

• Measurement of polarization amplitudes and phases in the $B^0 \rightarrow J/\psi K^*$ decay from fit to time dependent angular distributions.

• Comparison with existing results from B Factories and Tevatron will validate the use of simulated acceptance functions and allow estimation of systematic uncertainties to $2\beta_s$ related to angular acceptance.

Parameters	Expected uncertainty	CDF result
	$2 \mathrm{fb}^{-1}$ @ LHCb	(2007)
$ A_{\parallel} ^2$	0.001	$0.211 \pm 0.012 \pm 0.006$
$ A_0 ^2$	0.001	$0.569 \pm 0.009 \pm 0.009$
$ A_{\perp} $	0.001	-
$\delta_{\parallel} \; [\mathrm{rad}]$	0.007	$-2.96 \pm 0.08 \pm 0.03$
δ_{\perp} [rad]	0.006	$2.97 \pm 0.06 \pm 0.01$
$\Gamma_{\rm d} [{\rm ps}^{-1}]$	0.0009	-

 Strong constrain already for a ± 5% modified angular acceptance.

Parameters	Nominal	Correct ϵ	Random $\pm 1\sigma$	All angles
$ A_{ } ^2$	0.240	$0.239 \pm 0.001 \ (-0.3\sigma)$	$0.236 \pm 0.001 \ (-2.6\sigma)$	$0.223 \pm 0.001 \ (-13.3\sigma)$
$ A_{\perp} ^{2}$	0.160	$0.159 \pm 0.001 \ (-0.5\sigma)$	$0.159 \pm 0.001 \ (-1.2\sigma)$	$0.178 \pm 0.001 \ (+14.6\sigma)$
δ_{\parallel}	2.501	$2.509 \pm 0.007 \ (+1.3\sigma)$	$2.519 \pm 0.007 \ (+2.7\sigma)$	$2.838 \pm 0.007 \ (+5.3\sigma)$
$\delta_{\perp}^{"}$	-0.170	$-0.166 \pm 0.006 \ (+0.8\sigma)$	$-0.148 \pm 0.006 (+3.8\sigma)$	$-0.145 \pm 0.006 \ (+3.6\sigma)$