

A Large TPC Prototype for an ILC Detector Klaus Dehmelt DESY On behalf of the LCTPC Collaboration The 2009 Europhysics Conference on High Energy Physics Kraków, Poland, **July 18, 2009**

LCTPC Collaboration

Performance goals and design parameters for a TPC with standard electronics at the ILC detector

Size	$\phi = 3.6 \text{m}, \text{L} = 4.3 \text{m}$ outside dimensions
Momentum resolution $(3.5T)$	$\delta(1/p_t)\sim 9\times 10^{-5}/{\rm GeV/c}$ TPC only (\times 0.4 if IP incl.)
Momentum resolution $(3.5T)$	$\delta(1/p_t) \sim 2 \times 10^{-5}/\text{GeV/c} \text{ (SET+TPC+SIT+VTX)}$
Solid angle coverage	Up to $\cos\theta \simeq 0.98$ (10 pad rows)
TPC material budget	$\sim 0.04 X_0$ to outer fieldcage in r
($\sim 0.15 X_0$ for readout endcaps in z
Number of pads/timebuckets	$\sim 1{\times}10^6/1000~{\rm per}$ endcap
Pad size/no.padrows	\sim 1mm ×4–6mm/~200 (standard readout)
$\sigma_{\text{point}} \text{ in } r\phi$	$< 100 \mu \text{m}$ (average over L _{sensitive} , modulo track ϕ angle)
$\sigma_{\rm point}$ in rz	$\sim 0.5 \text{ mm} (\text{module track } \theta \text{ angle})$
2-hit resolution in $r\phi$	$\sim 2 \text{ mm} \pmod{\text{track angles}}$ W1th MPGD
2-hit resolution in rz	$\sim 6 \text{ mm} \pmod{10} \text{ track angles}$
dE/dx resolution	$\sim 5 \%$
Performance	> 97% efficiency for TPC only (p _t > 1GeV/c), and
	$>99\%$ all tracking $(p_t>1{\rm GeV/c})$
Background robustness	Full efficiency with 1% occupancy
Background safety factor	Chamber will be prepared for 10 \times worse backgrounds
	at the linear collider start-up

EPS 2009 July 18, 2009

TPC with MPGD

EPS 2009 July 18, 2009

İİL

TPC with MPGD

TPC with MPGD

D. Peterson, Cornell

- Aluminum
- Accommodates seven detector/ dummy modules
- $d = d_{outer,FC} = 770 \text{ mm}$
- Modules have same shape \rightarrow interchangeable

LP-TPC Field Cage (FC)

EPS 2009 July 18, 2009

K. Dehmelt

DESY Setup

PCMAG: superconducting magnet, up to 1.25 T • e^{-} test beam @DESY (1GeV/c<p<6GeV/c)

iC

July 18, 2009

MicroMeGaS Structure

'Bulk Micromegas' panels, without resistive foil and with resistive carbonloaded kapton, have been produced at CERN (Rui de Oliveira)

MicroMeGaS for IΡ· 24 rows x 72 pads Av. Pad size: 3.2 x 7mm²

Electrons (5 GeV), Magnetic field (B=1T)

İİĿ

• <u>Resolution</u> at z=0: σ_0 = 54.8±1.6 µm with 2.7-3.2 mm pads (w_{nad} /55)

Effective number of electrons: N_{eff} = 31.8±1.4 consistent with expectations

Double GEM Structure

staggered every each layer

6 layers PCB

one GND layer

K. Dehmelt

EPS 2009 July 18, 2009

ΪĹ

Double GEM Structure

Readout electronics: Based on ALTRO (ALICE TPC)

L. Joensson, LUND University

About 3200 channels readout electronics

EPS 2009 July 18, 2009

İİĹ

Double GEM Structure

Resolution as a function of drift distance

R. Yonanime, KEK

July 18, 2009

IIL

- anode plane
- GEMs
- readout plane
- quad-boards reinforcement of anode plane
- redframe

Readout: 2 quadboards (4 TimePix Chips each)

J. Kaminski, Univ. of Bonn

K. Dehmelt

Largest amount of readout channels on one anode for a TPC so far: # ch \cong 500 k

J. Kaminiski, Univ. of Bonn

Laser Calibration Setup

Pattern seen with Micromegas

EPS 2009 July 18, 2009

ΪĹ

A Large Prototype of a TPC has been built and is being assembled/tested/commissioned by the LCTPC collaboration
Two MPGD technologies (with three electronics techniques) are being tested:

- * Micromegas
- ★ GEM
- Infrastructure for Large Prototype has been constructed
- e^{-} test beam (DESY) in conjunction with PCMAG (1T magnet)
- Preliminary results are looking very promising
- Further test beam campaigns in the next year:
 - Backplane integrated 10,000 channel readout system, based on ALTRO electronics
 - Seven Micromegas modules with AFTER electronics attached to the modules

Backup Slides

LP-TPC Endplate

D. Peterson, Cornell

EPS 2009 July 18, 2009

ilc

Charge Spreading

EPS 2009 July 18, 2009

IIL

High field created by Gas Gain GridsMost popular: GEM and Micromegas

Use 'naked' CMOS pixel readout chip as anode

J. Timmermans NIKHEF

Readout Electronics

Three-fold readout electronics:

- <u>ALICE</u> based: new PCA16 amplifier chip + ALTRO chip (EUDET & LCTPC)
- <u>T2K</u> based: AFTER electronics for T2K TPC (CEA Saclay)
- <u>TDC</u> based: ASDQ chip + TDC (EUDET & Uni Rostock)

AFTER electronics for MicroMeGAS (resistive anode readout) ALTRO and TDC based electronics will be hooked to the GEM detector modules (connector compatibility)

Readout Electronics: ALTRO

PCA16:

1.5 V supply; power consumption <8 mW/channel 16 channel charge amplifier + anti-aliasing filter Fully differential output amplifier Programmable features signal polarity Power down mode (wake-up time = 1 ms) Peaking time (30 – 120 ns) Gain in 4 steps (12 – 27 mV/fC) Preamp out mode (bypass shaper or not) Tunable time constant of the preamplifier Basically pin-compatible with PASA

2048ch,16 FEC 1PC Data in/out 25cm 200MB/s 2 fibres close ethernet Dist box Trigger +event # Trigger busy meters)ther subsys dat Main away DAQ

EPS 2009 July 18, 2009

ΪĹ

Readout Electronics: AFTER

LCTPC meeting Oct. 10, 2007

E. DELAGNES

ijĻ

Readout Electronics: TDC

K. Dehmelt

İİĹ

LP Mechanics

Design Study of the Magnetmovementtable

Support structures:

- TPC
- PCMAG
- F. Hegner, V. Prahl, R. Volkenborn, DESY

27

