Europhysics Conference On High Energy Physics July 16-22 2009, Krakow Poland

CP Violation in Hadronic Penguin Modes

Eli Ben-Haïm LPNHE-IN2P3-Université Paris VI On behalf of the *BABAR* collaboration

Introduction

- Time Dependent CP Asymmetry
- Technique for Time Dependent Measurements and Flavor Tagging
- $sin 2\beta$ From b→s Penguins

Will not be included in this introduction:

- PEP-II, the BaBar experiment and Dataset
- Definition of kinematic variables (m_{ES} and ΔE)
- Event shape variables for continuum reduction

Time Dependent CP Asymmetry

- Can be used for the extraction of sin(2β); interference
 Direct decay
 between decay and mixing
- For example, in the "Golden" b \rightarrow cc̄s mode (B⁰ \rightarrow J/ ψ K⁰_S):

f_{CP}

Mixing

Time Dependent Measurements, Flavor Tagging

Ingredients:

- 1. We need to measure time
- 2. If we want to study a decay B⁰→f where f is also accessible by an anti-B⁰ B⁰→f and we want to be sensitive to Γ(B⁰→f) ≠ Γ(B⁰→f) we need to "tag" the B flavor

Time Dependent Measurements, Flavor Tagging

Method:

- **Boost**: Δt measured via space length measurement Δz between B_{tag} and B_{rec}
- Coherent evolution:
 - at t_{tag} the flavors of B_{rec} and B_{tag} are opposite
 - flavor of the B_{tag} determined by its decay product (charge of leptons, K, π)
 - flavor of the B_{rec} determined from the flavor of B_{tag} (and Δt)

$sin 2\beta$ From b \rightarrow s Penguins (I)

Eli Ben-Haim

$sin 2\beta$ From b \rightarrow s Penguins (I)

• Within the Standard Model (SM):

$$S_{c\bar{c}s} = S_{q\bar{q}s} + \Delta S_{SM} = -\eta_{CP} \sin 2\beta$$
$$C_{c\bar{c}s} \approx C_{q\bar{q}s} = 0$$

(dominant phase is the same as in $b \rightarrow c\bar{c}s$)

$$\overline{B}^{0}_{d} \xrightarrow{t} \underbrace{S}_{d} \xrightarrow{q} \underbrace{S}_{d} \underbrace{S}_$$

New physics in the loop may cause deviation in the values of S and C.

$\begin{array}{c} \widetilde{g} \\ \widetilde{b} \otimes \widetilde{s} & \widetilde{s} \\ \overbrace{\delta^{d}_{23}}_{LR} \end{array}$

Definitions:

$$\Delta \mathbf{S} = \mathbf{S}_{c\bar{c}s} - \mathbf{S}_{q\bar{q}s}$$
$$\mathbf{sin} 2\boldsymbol{\beta}^{\text{eff}} = -\eta_{CP} \mathbf{S}_{q\bar{q}s}$$

Tensions between $\sin 2\beta$ from $b \rightarrow c\bar{c}s$ and $b \rightarrow q\bar{q}s$ ($\Delta S < 0$)

-0.5

 $-\eta_f \times S_f$

0

0.5

In 2004:

BABAR 04

 $\begin{array}{r} 0.726 \pm 0.037 \\ \text{BABAR 04} \\ 0.50 \pm 0.25 \begin{array}{c} + 0.07 \\ - 0.04 \end{array}$

0.27±0.14±0.03 Belle 04 0.65±0.18±0.04 BABAR 04

 $0.95^{+0.23}_{-0.32}\pm0.10$

BABAR 04 0.35^{+0.30}_{-0.33}±0.04

 $0.75 \pm 0.64^{+0.13}_{-0.16}$ BABAR 04

 $0.55 \pm 0.22 \pm 0.12$

Average (s-penguin)

-1.5

-1

Belle 04 -0.47 ± 0.41 ± 0.08

Belle 04 0.30±0.59±0.11 Belle 04

Belle 04 0.49±0.18^{+0.17}_-0.04

 0.41 ± 0.07

K₆⁰K₅⁰K₅⁰ Belle 04 -1.26±0.68±0.18

-2

Belle 04

Belle 04 0.06±0.33±0.09 BABAR 04

 $0.722 \pm 0.040 \pm 0.023$

 $0.728 \pm 0.056 \pm 0.023$

Average (charmonium - all exps.)

Charmonium

φK

η'K S

З°

π^oK_S^0

 ωK_S^0

KKK⁰

Eli Ben-Haim

EPS HEP 2009, July 16th 2009

New Physics

contribution

1.5

HFAG

EPCP 2004

1

$sin 2\beta$ From b \rightarrow s Penguins (II)

The situation today is quite different

- Fresh sin2β world averages (HFAG):
 - b \rightarrow ccs: 0.67 ± 0.02
 - $b \rightarrow q\overline{q}s: 0.62 \pm 0.04$ (naïve!)
- Improvements:
 - hints of trends/deviations in previous measurements clarified by B factories
 - several results from (Time Dependent) Dalitz Plot analyses
- Still... some tension persists because of the theoretical prediction ΔS_{SM} > 0

In the following I will talk about analyses that measure S and C for the modes marked with *

 $\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})$

Eli Ben-Haim

Analyses and Results

- Time Dependent CP Asymmetry in $B^0 \rightarrow \omega K_S^0$, $\eta' K^0$, $\pi^0 K_S^0$ arXiv:0809.1174 [hep-ex], Phys.Rev.D79:052003,2009.
- Time Dependent Dalitz-Plot Analysis of $B^0 \rightarrow \pi^+ \pi^- K^0_S$ arXiv:0905.3615 [hep-ex], submitted to PRD.

Overview

 $B^0 \rightarrow \omega K^0_{S}, \eta' K^0_{S}, \eta' K^0_{L}, \pi^0 K^0_{S}$

- The 4 final states are CP eigenstates
 Notably Large BF for B⁰ → η' K⁰ BR(η' K⁰)=65x10⁻⁶ ~ 7 x BR(π⁰K⁰) ("Puzzle of the B → η' K branching ratio")
 - \rightarrow small errors on S and C
- The present analysis:
 - uses full BaBar dataset (467M BB pairs)
 → 20% increase wrt. previous analysis
 - has an additional η' decay channel in $\eta' \, K^0_{\ L}$
 - decreased errors on S and C for $\eta' K^0$ by 20-25%

Signal yields:

Mode	$\eta' K^0_{\ S}$	$\eta' K^0_{\ L}$	ωK^0_{S}	$\pi^0 K^0{}_S$
Yield	1959±58	556±38	163±18	556±32

Results

• C compatible with 0 to 1σ , except $C(\omega K_{S}^{0}) = -0.52^{+0.22}_{-0.20} \pm 0.03$

all

- sig

 ωK_{S}^{0}

 $C = -0.52 + 0.22 \pm 0.03$

(a)

(b)

150

100

50

150

100

50

0.5

Δt (ps)

 More data is needed to confirm possible deviations

20

10

Å 20−(b)

10

-1.0 -6

tts / ps

Eli Ben-Haim

B⁰ tags

 \overline{B}^0 tags

Asymmetry 0.5

EPS HEP 2009, July 16th 2009

4

Δt (ps)

-6

6

-2

2

6

Δt (ps)

∆t (ps)

2

Analyses and Results

- Time Dependent CP Asymmetry in $B^0 \rightarrow \omega K_S^0$, $\eta' K_S^0$, $\pi^0 K_S^0$ arXiv:0809.1174 [hep-ex], Phys.Rev.D79:052003,2009.
- Time Dependent Dalitz-Plot Analysis of $B^0 \rightarrow \pi^+ \pi^- K^0_S$ arXiv:0905.3615 [hep-ex], submitted to PRD.

$B^0 \rightarrow \pi^+ \pi^- K^0_{S}$

Dalitz-Plot (DP) Analysis

Directly extracted parameters: isobar amplitudes C_i Other parameters (S, C, A_{CP}, phases, Branching Fractions) are computed from them

Superimposed resonant contributions \rightarrow interference

→ access to phases with no $\sin 2\beta^{\text{eff}} = \sin(180^{\circ} - 2\beta^{\text{eff}})$ ambiguity! Eli Ben-Haim EPS HEP 2009, July 16th 2009

Dalitz-Plot Signal Model

 $\pi^+ \pi^-$

Κπ

- In Practice, we use a "square DP": a transformation $(m_{13}, m_{23}) \rightarrow (m', \theta')$
- Signal components:
 - $B^0 \to \rho^0(770) \, \mathrm{K}^0_{\mathrm{S}}$
 - $B^0 \to f_0(980) K^0_{S}$
 - $B^0 \rightarrow f_x(1300) \text{ K}^0_s$
 - $B^0 \to f_2(1270) K_8^0$
 - $B^0 \rightarrow \chi_{c0} K^0_{S}$
 - $B^0 \rightarrow K^*(892) \pi$
 - $B^0 \rightarrow K\pi$ S-wave
 - Non-resonant
 - \rightarrow 8x2–1=15 complex isobar amplitudes
- Same signal model as in BaBar $B^+ \rightarrow K^+ pi^- pi^+$ analysis
- The interference is visible

Eli Ben-Haim

Motivations

- From what we have already seen...
 - The signal contains $\rho^0(770) \, \text{K}^0_{\text{S}}$ and $f_0(980) \, \text{K}^0_{\text{S}}$ intermediate resonant states (b $\rightarrow q\bar{q}s \text{ modes}$) \Rightarrow measurement of β^{eff}
 - Time dependent DP \Rightarrow no $\sin 2\beta^{\text{eff}} = \sin(180^\circ 2\beta^{\text{eff}})$ ambiguity on phases
 - Rich resonance structure \Rightarrow access to many observables!
- Furthermore...
 - Access CKM angle γ from phases related to the K^{*} π intermediate states in B⁰ \rightarrow K⁺ $\pi^{-}\pi^{0}$ and B⁰ \rightarrow K_S $\pi^{+}\pi^{-}$ Ciuchini, Pierini & Silvestrini [PRD74:051301 2006] Gronau, Pirjol, Soni & Zupan [PRD75:014002 2007]

Invariant mass of the two pions $(m_{\pi\pi})$ for all the events

EPS HEP 2009, July 16th 2009

Eli Ben-Haim

Eli Ben-Haim

Eli Ben-Haim

EPS HEP 2009, July 16th 2009

Invariant mass of the K and π system (m_{K π}) for all the events

$B^0 \rightarrow \pi^+ \pi^- K^0_{S}$

Results: Δt and asymmetry for $f_0(980) \text{ K}^0$ s

Eli Ben-Haim

EPS HEP 2009, July 16th 2009

Results: CP parameters - C and β^{eff}

- Projections of the likelihood function (including systematic uncertainties) on the C β^{eff} plan for $f_0(980) \text{ K}_8^0$ and $\rho^0(770) \text{ K}_8^0$.
- Contours represent the 1 to 5σ (Gaussian standard deviations) regions

 $B^0 \rightarrow \pi^+ \pi^- K^0_{S}$

• We have two solutions, almost degenerate in likelihood.

Results: information for the extraction of γ

- CPS [PRD74:051301] and GPSZ [PRD75:014002] use the phase differences: $\Delta \Phi(K^*(892)\pi) \equiv \arg(C_{K^{*+}(892)\pi^-}) - \arg(C_{K^{*-}(892)\pi^+})$ and $\Delta \Phi((K\pi)_{\text{S-wave}}\pi)$ to extract **information about the CKM angle** γ (together with information from K^{*+} / K^{*0} from K⁺ $\pi^- \pi^0$)
- The likelihood projection (including systematic uncertainties) on these parameters:

 $B^0 \rightarrow \pi^+ \pi^- K^0_{S}$

The constraint obtained here is statistically limited

e.g. $-137^{\circ} < \Delta \phi [K^{*}(892) \pi] < -5^{\circ}$ excluded at 95% CL

• We also measure:

 $\begin{array}{ll} \mathsf{A}_{CP}[\mathsf{K}^*(892)\ \pi] = -0.21 \pm 0.10 \pm 0.01 \pm 0.02 \ \text{; } \mathsf{A}_{CP}[(\mathsf{K}\pi)_{\mathsf{S-wave}}\ \pi] = 0.09 \pm 0.07 \pm 0.02 \pm 0.02 \\ \text{Eli Ben-Haim} & \text{EPS HEP 2009, July 16th 2009} \end{array}$

 $B^0 \rightarrow \pi^+ \pi^- K^0_{S}$

Results: summary and perspectives

- Using 383M BB decays we measured
 15 relative isobar magnitudes & phases
 - ⇒ 9 Branching Ratios
 - \Rightarrow 9 CP Asymmetries
 - \Rightarrow S and C for 5 modes
- A joint/combined Dalitz plot analysis with the Belle and BaBar likelihood functions is planned for this channel, using the full datasets. The joint analysis, apart from getting the best from the B-factory data might help to solve the multiple solution problem and provide more information about the f_x resonance. We plan to perform as a first step a common fit of the $B^+ \rightarrow K^+ pi^- pi^+$ channel that provides information about the signal model for the present one.

Eli Ben-Haim

Summary and Conclusions

- BaBar is adding more information on $\sin 2\beta$ and using more sophisticated analysis techniques to improve the precision of measurement in hadronic penguin modes
- Measurements of decay amplitudes in DP analyses can be used to set non-trivial constraints on the CKM parameters $(\overline{\rho}, \overline{\eta})$
- Overall, we observe an agreement between $\sin 2\beta^{\text{(eff)}}$ in b \rightarrow cc̄s and b \rightarrow qq̄s
- Most of the b \rightarrow s penguins still have $\sin 2\beta e^{\text{ff}} < \sin 2\beta$
- The actual statistics is not sufficient to tell whether or not this could be an indication for new physics.

Eli Ben-Haim

Eli Ben-Haim

The BaBar Detector

Quick Reminder of Basics

 $V_{CKM} \text{ Unitarity} \Rightarrow V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$ $\sum_{\alpha \lambda^3}^{\infty \lambda^3} \sum_{\alpha \lambda^3}^{\infty \lambda^3} \sum_{\alpha \lambda^3}^{\infty \lambda^3} \sum_{\alpha \lambda^3}^{\infty \lambda^3} V_{cb}^* = 0$

In other unitarity conditions (triangles) sides are very different. Second and third columns: flat triangle for B_S

CP Violation is possible in the Standard Model only if V_{CKM} is complex $\Leftrightarrow \eta \neq 0 \Leftrightarrow$ Unitarity Triangle is not flat

We want to determine ρ and η experimentally

Eli Ben-Haim

Systematic Uncertainties

Source	$S_{\omega K^0_S}$	$C_{\omega K^0_S}$	$S_{\eta'K^0_S}$	$C_{\eta'K^0_S}$	$S_{\eta' K^0_L}$	$C_{\eta' K^0_L}$	$S_{\pi^0 K^0_S}$	$C_{\pi^0 K^0_S}$
Variation of PDF parameters	0.012	0.019	0.006	0.009	0.009	0.007	0.010	0.012
Bias correction	0.010	0.007	0.006	0.005	0.014	0.009	0.011	0.001
Interference from DCSD on tag side	0.001	0.015	0.001	0.015	0.001	0.015	0.001	0.015
$B\overline{B}$ background	0.009	0.010	0.009	0.005	-	-	0.005	0.001
Signal Δt parameters from B_{flav}	0.002	0.001	0.009	0.015	0.004	0.008	0.016	0.011
SVT alignment	0.011	0.003	0.002	0.003	0.004	0.004	0.009	0.009
Beam-spot position and size	0.000	0.000	0.002	0.001	0.004	0.003	0.004	0.002
Vertexing method	-	-	-	-	-	-	0.008	0.016
Self-crossfeed	-	-	0.004	0.001	0.001	0.004	-	-
Total	0.021	0.028	0.016	0.024	0.018	0.021	0.025	0.028

 $B^0 \rightarrow \omega K^0_{S}, \eta' K^0_{S}, \eta' K^0_{L}, \pi^0 K^0_{S}$

Dataset and Square DP

Eli Ben-Haim

EPS HEP 2009, July 16th 2009

The Likelihood function

$$\begin{split} \mathcal{P}_{i}^{c} &= N_{\mathrm{sig}} f_{\mathrm{sig}}^{c} \left[(1 - \overline{f}_{\mathrm{SCF}}^{c}) \mathcal{P}_{\mathrm{sig-TM},i}^{c} + \overline{f}_{\mathrm{SCF}}^{c} \mathcal{P}_{\mathrm{sig-SCF},i}^{c} \right] \\ &+ N_{q\bar{q}} \frac{1}{2} \left(1 + q_{\mathrm{tag},i} A_{q\bar{q}} \right) \mathcal{P}_{q\bar{q},i}^{c} \\ &+ N_{B^{+}} f_{B^{+}}^{c} \frac{1}{2} \left(1 + q_{\mathrm{tag},i} A_{B^{+}} \right) \mathcal{P}_{B^{+},i}^{c} \\ &+ \sum_{j=1}^{N_{B^{0}j}} N_{B^{0}j} f_{B^{0}j}^{c} \mathcal{P}_{B^{0},ij}^{c} \\ &+ \sum_{j=1}^{N_{c}} N_{B^{0}j} f_{B^{0}j}^{c} \mathcal{P}_{B^{0},ij}^{c} \\ \mathcal{P}_{X,i(j)}^{c} &\equiv \prod_{k=1}^{4} \mathcal{P}_{X,i(j)}^{c}(x_{k}) \\ &X = \{ \mathrm{sig-TM}, \ \mathrm{sig-SCF}, \ q\bar{q}, \ B^{+}, \ B^{0} \} \\ &x_{1} = m_{\mathrm{ES}}, \ x_{2} = \Delta E, \ x_{3} = \mathrm{NN} \\ &x_{4} = \{ m', \theta', \Delta t \} ; \end{split}$$

Eli Ben-Haim

Extracted Isobar Parameters

	-			
	Solution I		Solut	ion II
Isobar Amplitude	Magnitude	Phase ($^{\circ}$)	Magnitude	Phase $(^{\circ})$
$c_{f_0(980)K_S^0}$	4.0	0.0	4.0	0.0
$\bar{c}_{f_0(980)K_S^0}$	3.7 ± 0.4	-73.9 ± 19.6	3.2 ± 0.6	-112.3 ± 20.9
$C_{\rho(770)K_{S}^{0}}$	0.10 ± 0.02	35.6 ± 14.9	0.09 ± 0.02	66.7 ± 18.3
$\bar{c}_{\rho(770)K_{S}^{0}}$	0.11 ± 0.02	15.3 ± 20.0	0.10 ± 0.03	-0.1 ± 18.2
$c_{K^{*}+(892)\pi^{-}}$	0.154 ± 0.016	-138.7 ± 25.7	0.145 ± 0.017	-107.0 ± 24.1
$\bar{c}_{K^{*}-(892)\pi^{+}}$	0.125 ± 0.015	163.1 ± 23.0	0.119 ± 0.015	76.4 ± 23.0
$c_{(K\pi)_{0}^{*+}\pi^{-}}$	6.9 ± 0.6	-151.7 ± 19.7	6.5 ± 0.6	-122.5 ± 20.3
$\bar{c}_{(K\pi)_0^{*-}\pi^+}$	7.6 ± 0.6	136.2 ± 19.8	7.3 ± 0.7	52.6 ± 20.3
$c_{f_2(1270)K_S^0}$	0.014 ± 0.002	5.8 ± 19.2	0.012 ± 0.003	23.9 ± 22.7
$\bar{c}_{f_2(1270)K_S^0}$	0.011 ± 0.003	-24.0 ± 28.0	0.011 ± 0.003	-83.3 ± 24.3
$c_{f_X(1300)K_S^0}$	1.41 ± 0.23	43.2 ± 22.0	1.40 ± 0.28	85.9 ± 24.8
$\bar{c}_{f_X(1300)K_S^0}$	1.24 ± 0.27	31.6 ± 23.0	1.02 ± 0.33	-67.9 ± 22.1
c_{NR}	2.6 ± 0.5	35.3 ± 16.4	1.9 ± 0.7	56.7 ± 23.6
\bar{c}_{NR}	2.7 ± 0.6	36.1 ± 18.3	3.1 ± 0.6	-45.2 ± 17.8
$c_{\chi_{c0}K_S^0}$	0.33 ± 0.15	61.4 ± 44.5	0.28 ± 0.16	51.9 ± 38.4
$\bar{c}_{\chi_{c0}K^0_S}$	0.44 ± 0.09	15.1 ± 30.0	0.43 ± 0.08	-58.5 ± 27.9

EPS HEP 2009, July 16th 2009

Definition of Physical Parameters

$$\beta_{\text{eff}}(k) = \frac{1}{2} \arg(c_k \bar{c}_k^*)$$
$$C(k) = \frac{|c_k|^2 - |\bar{c}_k|^2}{|c_k|^2 + |\bar{c}_k|^2}$$

 $S(k) = \frac{2\,\mathcal{I}m(\bar{c}_k c_k^*)}{|c_k|^2 + |\bar{c}_k|^2}$

 $A_{CP}(k) = \frac{|\bar{c}_{\bar{k}}|^2 - |c_k|^2}{|\bar{c}_{\bar{k}}|^2 + |c_k|^2}$

 $\phi(k,k') = \arg(c_k c_{k'}^*).$

 $\bar{\phi}(k,k') = \arg(\bar{c}_k \bar{c}_{k'}^*)$

 $\Delta \Phi(k) = \arg(c_k \bar{c}_k^*)$

$$FF(k) = \frac{(|c_k|^2 + |\bar{c}_k|^2) \langle F_k F_k^* \rangle}{\sum_{\mu\nu} (c_\mu c_\nu^* + \bar{c}_\mu \bar{c}_\nu^*) \langle F_\mu F_\nu^* \rangle} \,,$$

 $B^0 \rightarrow \pi^+ \pi^- K^0_S$

where the terms

$$\langle F_{\mu}F_{\nu}^{*}\rangle = \iint F_{\mu}F_{\nu}^{*}ds_{+}ds_{-}$$

$$BF(k) = FF(k) \times \mathcal{B}(B^0 \to K_S^0 \pi^+ \pi^-)$$

$$A_{CP}^{incl} = \frac{\iint \left(\left| \bar{\mathcal{A}} \right|^2 - \left| \mathcal{A} \right|^2 \right) ds_+ ds_-}{\iint \left(\left| \bar{\mathcal{A}} \right|^2 + \left| \mathcal{A} \right|^2 \right) ds_+ ds_-}$$

Physical Parameters (I)

Parameter	Solution I	Solution II
$C(f_0(980)K_S^0)$	$0.08 \pm 0.19 \pm 0.03 \pm 0.04$	$0.23 \pm 0.19 \pm 0.03 \pm 0.04$
$\beta_{\rm eff}(f_0(980)K_S^0)$	$36.0 \pm 9.8 \pm 2.1 \pm 2.1$	$56.2 \pm 10.4 \pm 2.1 \pm 2.1$
$S(f_0(980)K_S^0)$	$-0.96^{+0.21}_{-0.04} \pm 0.03 \pm 0.02$	$-0.90^{+0.26}_{-0.08} \pm 0.03 \pm 0.02$
$\operatorname{Corr}[\beta_{\operatorname{eff}}(f_0(980)K_S^0), C(f_0(980)K_S^0)]$	-3.1%	-17.0%
$\operatorname{Corr}[S(f_0(980)K_S^0), C(f_0(980)K_S^0)]$	19.7%	12.5%
$FF(f_0(980)K_S^0)$	$13.8^{+1.5}_{-1.4}\pm0.8\pm0.6$	$13.5^{+1.4}_{-1.3}\pm0.8\pm0.6$
$C(\rho^0(770)K_S^0)$	$-0.05\pm0.26\pm0.10\pm0.03$	$-0.14\pm0.26\pm0.10\pm0.03$
$\beta_{\rm eff}(ho^0(770)K_S^0)$	$10.2 \pm 8.9 \pm 3.0 \pm 1.9$	$33.4 \pm 10.4 \pm 3.0 \pm 1.9$
$S(\rho^0(770)K_S^0)$	$0.35^{+0.26}_{-0.31}\pm 0.06\pm 0.03$	$0.91^{+0.07}_{-0.19}\pm 0.06\pm 0.03$
$\operatorname{Corr}[\beta_{\operatorname{eff}}(\rho^0(770)K_S^0), C(\rho^0(770)K_S^0)]$	-23.0%	-34.0%
$\operatorname{Corr}[S(\rho^0(770)K_S^0), C(\rho^0(770)K_S^0)]$	-21.3%	-10.4%
$FF(\rho^{0}(770)K_{S}^{0})$	$8.6^{+1.4}_{-1.3}\pm0.5\pm0.2$	$8.5^{+1.3}_{-1.2}\pm0.5\pm0.2$
$A_{CP}(K^{*}(892)\pi)$	$-0.21\pm0.10\pm0.01\pm0.02$	$-0.19^{+0.10}_{-0.11}\pm0.01\pm0.02$
$\Delta\Phi(K^*(892)\pi)$	$58.3 \pm 32.7 \pm 4.6 \pm 8.1$	$176.6 \pm 28.8 \pm 4.6 \pm 8.1$
$FF(K^*(892)\pi)$	$11.0^{+1.2}_{-1.0} \pm 0.6 \pm 0.8$	$10.9^{+1.2}_{-1.0} \pm 0.6 \pm 0.8$
$A_{CP}((K\pi)_0^*\pi)$	$0.09 \pm 0.07 \pm 0.02 \pm 0.02$	$0.12^{+0.07}_{-0.06} \pm 0.02 \pm 0.02$
$\Delta \Phi((K\pi)_0^*\pi)$	$72.2 \pm 24.6 \pm 4.1 \pm 4.4$	$-175.1 \pm 22.6 \pm 4.1 \pm 4.4$
$FF((K\pi)_0^*\pi)$	$45.2 \pm 2.3 \pm 1.9 \pm 0.9$	$46.1 \pm 2.4 \pm 1.9 \pm 0.9$
$C(f_2(1270)K_S^0)$	$0.28^{+0.35}_{-0.40} \pm 0.08 \pm 0.07$	$0.09 \pm 0.46 \pm 0.08 \pm 0.07$
$\beta_{\rm eff}(f_2(1270)K_S^0)$	$14.9 \pm 17.9 \pm 3.1 \pm 5.2$	$53.6 \pm 16.7 \pm 3.1 \pm 5.2$
$S(f_2(1270)K_S^0)$	$-0.48\pm0.52\pm0.06\pm0.10$	$-0.95\pm0.17\pm0.06\pm0.10$
$\operatorname{Corr}[\beta_{\operatorname{eff}}(f_2(1270)K_S^0), C(f_2(1270)K_S^0)]$	11.5%	-2.8%
$\operatorname{Corr}[S(f_2(1270)K_S^0), C(f_2(1270)K_S^0)]$	0.9%	21.2%
$FF(f_2(1270)K_S^0)$	$2.3^{+0.8}_{-0.7} \pm 0.2 \pm 0.7$	$2.3^{+0.9}_{-0.7}\pm0.2\pm0.7$

Eli Ben-Haim

EPS HEP 2009, July 16th 2009

Physical Parameters (II)

Parameter	Solution I	Solution II
$C(f_X(1300)K_S^0)$	$0.13^{+0.33}_{-0.35} \pm 0.04 \pm 0.09$	$0.30^{+0.34}_{-0.41} \pm 0.04 \pm 0.09$
$\beta_{\text{eff}}(f_X(1300)K_S^0)$	$5.8 \pm 15.2 \pm 2.2 \pm 2.3$	$76.9 \pm 13.8 \pm 2.2 \pm 2.3$
$S(f_X(1300)K_S^0)$	$-0.20\pm0.52\pm0.07\pm0.07$	$-0.42\pm0.41\pm0.07\pm0.07$
$\operatorname{Corr}[\beta_{\text{eff}}(f_X(1300)K_S^0), C(f_X(1300)K_S^0)]$	-27.0%	-9.3%
$\operatorname{Corr}[S(f_X(1300)K_S^0), C(f_X(1300)K_S^0)]$	28.5%	6.1%
$FF(f_X(1300)K_S^0)$	$3.6^{+1.0}_{-0.9}\pm0.3\pm0.9$	$3.5^{+1.0}_{-0.8}\pm0.3\pm0.9$
C(NR)	$0.01 \pm 0.25 \pm 0.06 \pm 0.05$	$-0.45^{+0.28}_{-0.24} \pm 0.06 \pm 0.05$
$\beta_{\rm eff}(NR)$	$0.4 \pm 8.8 \pm 1.9 \pm 3.8$	$51.0 \pm 13.3 \pm 1.9 \pm 3.8$
S(NR)	$-0.01\pm0.31\pm0.05\pm0.09$	$-0.87\pm0.18\pm0.05\pm0.09$
$\operatorname{Corr}[\beta_{\operatorname{eff}}(NR), C(NR)]$	-10.6%	-37.9%
$\operatorname{Corr}[S(NR), C(NR)]$	10.6%	-91.5%
FF(NR)	$11.5 \pm 2.0 \pm 1.0 \pm 0.6$	$12.6 \pm 2.0 \pm 1.0 \pm 0.6$
$C(\chi_{c0}K_S^0)$	$-0.29^{+0.53}_{-0.44}\pm0.03\pm0.05$	$-0.41^{+0.54}_{-0.42} \pm 0.03 \pm 0.05$
$eta_{ m eff}(\chi_{c0}K^0_S)$	$23.2 \pm 22.4 \pm 2.3 \pm 4.2$	$55.2 \pm 23.3 \pm 2.3 \pm 4.2$
$S(\chi_{c0}K_S^0)$	$-0.69\pm0.52\pm0.04\pm0.07$	$-0.85\pm0.34\pm0.04\pm0.07$
$\operatorname{Corr}[\beta_{\operatorname{eff}}(\chi_{c0}K_S^0), C(\chi_{c0}K_S^0)]$	-5.8%	-5.8%
$\operatorname{Corr}[S(\chi_{c0}K_S^0), C(\chi_{c0}K_S^0)]$	-19.1%	-74.2%
$FF(\chi_{c0}K_S^0)$	$1.04^{+0.41}_{-0.33} \pm 0.04 \pm 0.11$	$0.99^{+0.37}_{-0.30} \pm 0.04 \pm 0.11$
total FF	$97.2^{+1.7}_{-1.3} \pm 2.1 \pm 1.15$	$98.3^{+1.5}_{-1.3} \pm 2.1 \pm 1.15$
A_{CP}^{incl}	$-0.01\pm0.05\pm0.01\pm0.01$	$0.01\pm 0.05\pm 0.01\pm 0.01$
$\phi(f^0(980)K^0_S,\rho(770)K^0_S)$	$-35.6 \pm 14.9 \pm 6.1 \pm 4.4$	$-66.7 \pm 18.3 \pm 6.1 \pm 4.4$
$\phi(K^*(892)\pi, (K\pi)_0^*\pi)$	$13.0 \pm 10.9 \pm 4.6 \pm 4.7$	$15.5 \pm 10.2 \pm 4.6 \pm 4.7$
$\phi(\rho(770)K_S^0, K^*(892)\pi)$	$174.3 \pm 28.0 \pm 8.7 \pm 12.7$	$-173.7 \pm 29.8 \pm 8.7 \pm 12.7$
$\phi(ho(770)K_S^0,(K\pi)_0^*\pi)$	$-172.8\pm22.6\pm10.1\pm8.7$	$-170.8 \pm 26.8 \pm 10.1 \pm 8.7$
$\bar{\phi}(f^0(980)K^0_S,\rho(770)K^0_S)$	$-89.2 \pm 17.1 \pm 8.5 \pm 7.2$	$-112.2 \pm 17.8 \pm 8.5 \pm 7.2$
$\bar{\phi}(K^*(892)\pi,(K\pi)_0^*\pi)$	$26.9 \pm 9.2 \pm 4.9 \pm 6.1$	$23.8 \pm 9.1 \pm 4.9 \pm 6.1$
$\bar{\phi}(ho(770)K_S^0, K^*(892)\pi)$	$-147.8 \pm 24.7 \pm 11.3 \pm 11.9$	$-76.5\pm24.0\pm11.3\pm11.9$
$\bar{\phi}(\rho(770)K_S^0,(K\pi)_0^*\pi)$	$-120.9 \pm 21.6 \pm 8.7 \pm 7.3$	$-52.7 \pm 21.4 \pm 8.7 \pm 7.3$

Eli Ben-Haim

EPS HEP 2009, July 16th 2009

More Likelihood Projection Plots

Branching Fractions

$B^0 - $	$\rightarrow \pi^+$	π^{-}	K ⁰ _S
----------	---------------------	-----------	-----------------------------

Mode	$\mathcal{B}(B^0 \to \text{Mode}) \times \mathcal{B}(R \to hh) \times 10^{-6}$	$\mathcal{B}(B^0 \to \text{Mode}) \times 10^{-6}$
Inclusive $B^0 \to K^0 \pi^+ \pi^-$		$50.15 \pm 1.47 \pm 1.60 \pm 0.73$
$f_0(980)K^0$	$6.92 \pm 0.77 \pm 0.46 \pm 0.32$	
$\rho^0(770)K^0$	$4.31^{+0.70}_{-0.61}\pm0.29\pm0.12$	$4.36^{+0.71}_{-0.62} \pm 0.29 \pm 0.12 \pm 0.01$
$K^{*+}(892)\pi^{-}$	$5.52^{+0.61}_{-0.54} \pm 0.35 \pm 0.41$	$8.29^{+0.92}_{-0.81} \pm 0.53 \pm 0.62$
$(K\pi)_0^{*+}\pi^-$	$22.7^{+1.7}_{-1.3} \pm 1.2 \pm 0.6$	
$f_2(1270)K^0$	$1.15^{+0.42}_{-0.35} \pm 0.11 \pm 0.35$	$2.71^{+0.99}_{-0.83} \pm 0.26 \pm 0.83^{+0.08}_{-0.04}$
$f_X(1300)K^0$	$1.81^{+0.55}_{-0.45} \pm 0.16 \pm 0.45$	
flat NR		$5.77^{+1.61}_{-1.00} \pm 0.53 \pm 0.31$
$\chi_{c0}K^0$	$0.52^{+0.20}_{-0.16}\pm0.03\pm0.06$	$142^{+55}_{-44} \pm 8 \pm 16 \pm 12$

Systematic Uncertainties

Parameter	DP Model	Lineshape	Fit Bias	B Background	Other	Total
$C(f_0(980)K_S^0)$	0.04	0.02	< 0.01	0.01	0.02	0.05
$FF(f_0(980)K_S^0)$	0.6	0.69	0.5	0.07	< 0.01	1.03
$eta_{ ext{eff}}(f_0(980)K_S^0)$	2.1	1.9	< 0.1	0.2	0.3	2.9
$C(\rho^0(770)K_S^0)$	0.03	0.04	< 0.01	0.06	0.06	0.10
$FF(\rho^{0}(770)K_{S}^{0})$	0.23	0.31	0.3	0.09	0.15	0.52
$eta_{ ext{eff}}(ho^0(770)K_S^0)$	1.8	2.2	< 0.1	1.2	1.7	3.5
$A_{CP}(K^{*}(892)\pi)$	0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.02
$FF(K^{*}(892)\pi)$	0.8	0.13	0.4	0.03	0.43	1.00
$\Delta\Phi(K^*(892)\pi)$	8.1	2.8	< 0.1	1.4	3.3	9.3
$A_{CP}((K\pi)_0^*\pi)$	0.02	< 0.01	< 0.01	< 0.01	0.02	0.03
$FF((K\pi)_0^*\pi)$	0.90	0.39	1.8	0.12	0.33	2.08
$\Delta\Phi((K\pi)_0^*\pi)$	4.4	2.4	< 0.1	1.3	3.0	6.0
$C(f_2(1270)K_S^0)$	0.07	0.04	< 0.01	0.05	0.06	0.11
$FF(f_2(1270)K_S^0)$	0.69	0.16	0.09	0.02	0.19	0.74
$C(f_X(1300)K_S^0)$	0.09	0.03	< 0.01	0.01	0.03	0.10
$FF(f_X(1300)K_S^0)$	0.87	0.28	0.14	0.02	0.17	0.94
C(NR)	0.04	0.01	< 0.01	0.01	0.07	0.08
FF(NR)	0.60	0.86	0.5	0.12	1.62	2.00
$C(\chi_{c0}K_S^0)$	0.05	0.02	< 0.01	0.01	0.02	0.06
$FF(\chi_{c0}K^0_S)$	0.09	0.06	0.04	< 0.01	< 0.01	0.11
A_{CP}^{incl}	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01
FF_{Tot}	1.15	0.55	2.0	0.08	0.36	2.40
$\phi(f_0(980)K_S^0,\rho^0(770)K_S^0)$	4.4	2.6	< 0.1	3.4	4.3	7.5
$\phi(\rho^0(770)K_S^0, K^*(892)\pi)$	12.7	3.0	< 0.1	3.6	7.3	15.4
$\phi(\rho^0(770)K_S^0,(K\pi)_0^*\pi)$	8.7	8.5	< 0.1	3.9	3.7	13.3
$\phi(K^*(892)\pi, (K\pi)_0^*\pi)$	4.7	0.7	< 0.1	0.3	4.6	6.6
Signal Yield	31.7	5.8	14.0	3.3	23.0	42.1

Eli Ben-Haim

EPS HEP 2009, July 16th 2009

Extraction of CKM Angle γ

No other hypothesis than Isospin is used

Taking the $B^0 \rightarrow K^{*+}\pi^-$ and $B^0 \rightarrow K^{*0}\pi^0$ subsystem

Neglecting P_{EW} , the amplitude combinations: $3A_{3/2} = A(B^0 \rightarrow K^{*+}\pi^-) + \sqrt{2} \cdot A(B^0 \rightarrow K^{*0}\pi^0) = V_{us} V_{ub}^* (T^{++}T^{00})$ $3\overline{A}_{3/2} = \overline{A}(\overline{B^0} \rightarrow \overline{K^{*-}\pi^+}) + \sqrt{2} \cdot \overline{A}(\overline{B^0} \rightarrow \overline{K^{*0}\pi^0}) = V_{us}^* V_{ub}(T^{++}+T^{00})$ $Gives: R_{3/2} = (3A_{3/2})/(3\overline{A}_{3/2}) = e^{-2i\gamma}$ CPS PRD74:051301 GPSZ PRD75:014002 Direct access to γ CKM angle

Eli Ben-Haim

Extraction of CKM Angle γ

Eli Ben-Haim