Recent Results from WIMP-search analysis of CDMS-2 data

Zeeshan Ahmed

California Institute of Technology for the CDMS collaboration

The 2009 Europhysics Conference on High Energy Physics July 16, 2009

CDMS Collaboration

<u>Caltech</u> Z.Ahmed, J. Filippini, S. R. Golwala, D. Moore, R.W. Ogburn

<u>Case Western Reserve University</u> D. S. Akerib, K. Clark, C. N. Bailey, D. R. Grant, R. Hennings-Yeomans, M.R. Dragowsky

<u>Fermilab</u> D.A. Bauer, F. DeJongh J. Hall, L. Hsu, D. Holmgren, E. Ramberg, J. Yoo

MIT E. Figueroa-Feliciano, S. Hertel, S. Leman, K. McCarthy

<u>NIST</u> K. Irwin

Queens University W. Rau

Santa Clara University B.A.Young

<u>Stanford University</u> P.L. Brink, <u>B. Cabrera</u>, J. Cooley, M. Pyle, S. Yellin <u>Syracuse University</u> R.W. Schnee, M. Kos, J. M. Kiveni

<u>Texas A&M</u> R. Mahapatra

<u>University of California, Berkeley</u> M. Daal,, N. Mirabolfathi, <mark>B. Sadoulet</mark>, D. Seitz, B. Serfass, D. Seitz, K. Sundqvist

University of California, Santa Barbara R. Bunker, D. O. Caldwell, H. Nelson, J. Sanders

University of Colorado at Denver M. E. Huber

<u>University of Florida</u> T. Saab, D. Balakishiyeva

<u>University of Minnesota</u> P. Cushman, L. Dong, M. Fritts, V. Mandic, X. Qiu, O. Kamaev, A. Reisetter

<u>University of Zurich</u> S.Arrenberg, T. Bruch, L. Baudis, M. Tarka

Motivating Dark Matter & WIMPs

- Evidence for dark matter on various scales
 - Galaxies
 - Galaxy clusters
 - Large scale
- WIMPs (among other models) are particularly well motivated

Direct Detection of WIMPs

Spherical Isothermal Halo Max. Boltz. v distribution, <v>~230km/s

Build a good mousetrap!

- Choose target material to "see" recoils
- Discriminate NRs from ERs
- Reduce background

"See" Nuclear Recoils <Er>~30 keV, < ~levent/kg/l00days

CDMS-2 in a nutshell

Ge & Si target masses

Allow <1 background event to maximize discovery potential

Event by event **discrimination** of nuclear and electron recoils using **ionization** and **phonon** signals

Control Backgrounds by going underground, using clean materials and shielding

ZIP: Z-sensitive Ionization & Phonon Detectors

Basic Discrimination principles

Background Control in CDMS-2

Passive shielding

RF shielded class 10,000 clean room

Plastic scintillator muon veto

CDMS-2 @ Soudan

	T1	T2	ТЗ	T4	T5
Z1	G6	S14	S17	S12	G7
Z2	G11	S28	G25	G37	G36
Z3	G8	G13	S30	S10	S29
Z4	S3	S25	G33	G35	G26
Z5	G9	G31	G32	G34	G39
Z6	S1	S26	G29	G38	G24
Side View					

- 30 detectors installed and operating in Soudan since June 2006.
 - 4.75 kg of Ge, 1.1 kg of Si
- Seven Total Data Runs:
 - R123 R124:
 - taken: (10/06 3/07) (4/07 7/07)
 - exposure: ~400 kg-d (Ge "raw")
 - PRL 102, 011301 (2009)
 - R125 R128
 - taken: (7/07 1/08) (1/08 4/08)
 - (5/08 8/08) (8/08 9/08)
 - exposure: ~ 750 kg-d (Ge "raw")
 - Under Analysis
 - R129:
 - taken: (11/08 3/09)

Blind Analysis:

PRL 102, 011301 (2009)

Event selection and efficiencies were calculated without looking at the signal region of the WIMP-search data.

Event Selection:

- Energy threshold (10-100 keV)
- Veto-anticoincident
- Single-scatter
- Inside fiducial volume
- 2-sigma Nuclear Recoil
- Phonon timing

PRL 102, 011301 (2009)

Surface Background

Estimated number of background events to pass surface cut in Ge

$$0.6^{+0.5}_{-0.3}(stat.)^{+0.3}_{-0.2}(syst.)$$

Neutron Backround

Poly Cu (α,n): <0.03 Pb (fission): <0.1 Cosmogenic: <0.1 (MC 0.03-0.05) 398 raw kg-d 121 kg-d WIMP equiv. @ 60 GeV/c² (10 - 100 keV analysis energy range)

PRL 102, 011301 (2009)

 10^{1}

PRL 102, 011301 (2009)

Upper limit at the 90% C.L. on the WIMP-nucleon cross-section is **4.6 x 10⁻⁴⁴ cm²** for a WIMP of mass **60 GeV/c²**

CDMS-2: Projected Sensitivity (2009)

CDMS-2: Calibration Data Preview (2009)

Previous Analysis PRL 102, 011301 (2009)

Current Analysis

Data Quality and preliminary cuts defined!

CDMS-2: Timing Discrimination Preview (2009)

Aiming for x2-3 better surface event rejection to keep expected background <1 event

Stay Tuned...

SuperCDMS Soudan

- CDMS-2 target exposure acquired
- 15kg Ge experiment to succeed CDMS-2 with target reach of 5 x 10^{-45} cm² at 60 GeV/c²
- Detectors x2.5 more massive
- Phonon and Ionization sensors modified for better surface event rejection

First SuperTower already installed

- Data taken between Oct. 2006 and July 2007 has been analyzed and a cross section limit of < 4.6 x 10⁻⁴⁴cm² (90% CL) was placed for a WIMP of mass 60 GeV/c².
- CDMS II finished taking data on March 18, 2009. We are currently analyzing the last data sets.
- SuperCDMS Soudan will replace CDMS-2 and will extend reach to 5 x 10⁻⁴⁵ cm² at 60 GeV/c².
- The first SuperTower has been built and has been commissioned at Soudan.