

Particle Spectra at ZEUS

Lydia Shcheglova

on behalf of the ZEUS Collaboration Nuclear Physics Institute Moscow State University

EPS 2009, Krakow 16-22 July 2009

Outline

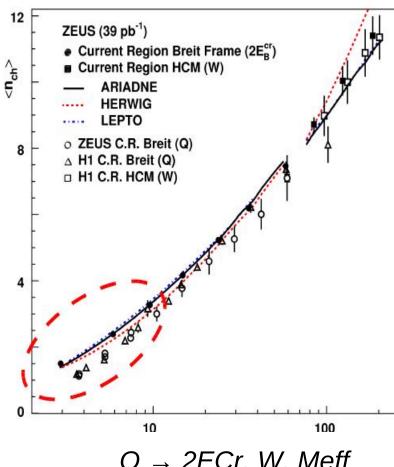
- Motivation
- Multiplicity studies in NC DIS:
 - multiplicity distributions
 - KNO scaling
 - energy dependence of multiplicity with different energy scales
- Scaled momentum distributions in dijet photoproduction:
 - comparison with the MLLA predictions
 - $-\Lambda_{\rm eff}$, LPHD k_{ch}

Multiplicity Distributions in DIS

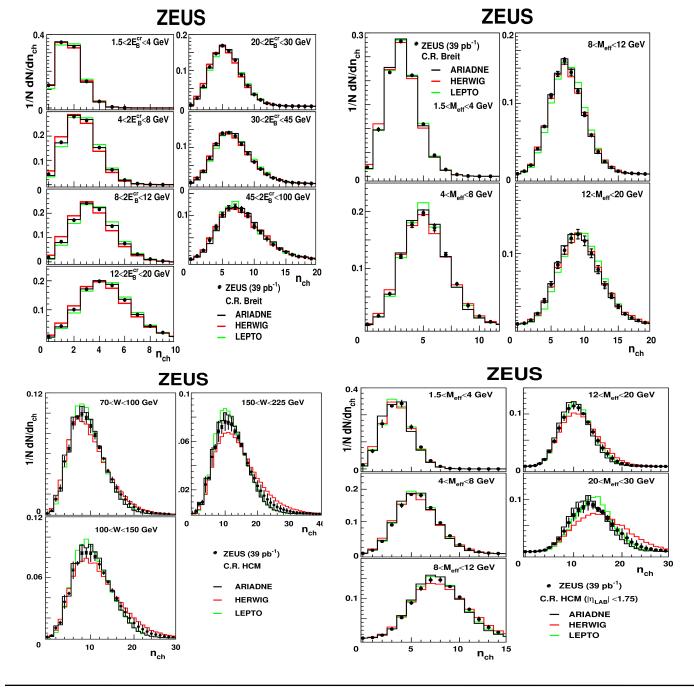
Data and motivation

- **Luminosity 38.6 pb-1 collection in 1996-7** with E_{proton} = 820 GeV and $E_{\text{e+}}$ = 27.5 GeV
- NC DIS events with $Q^2 > 25 \text{ GeV}^2$ 70 < W< 225 GeV

Comparison with e⁺e⁻ in previous studies in **Breit frame:**


- a reasonable agreement at Q>8 GeV
- no agreement at Q<8 GeV
- explained by the asymmetric nature of y*p

Alternative energy scales to Q:


- the invariant mass of hadronic system $M_{\text{eff}}^{\text{Breit}}$ and $M_{\rm eff}^{\rm HCM}$
- the available energy in the current region of Breit frame E_B^{Cr} or of HCM $E_{HCM}^{Cr} \approx W/2$

$$M_{eff}^{2} = (\sum_{i \neq e'} E^{i})^{2} - (\sum_{i \neq e'} p_{x}^{i})^{2} - (\sum_{i \neq e'} p_{y}^{i})^{2} - (\sum_{i \neq e'} p_{z}^{i})^{2}$$

ZEUS

 $Q \rightarrow 2ECr, W, Meff$

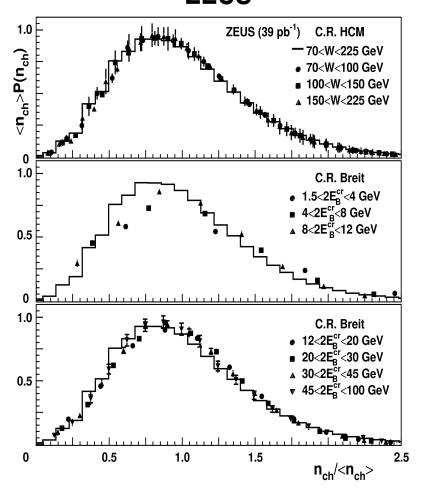
Multiplicity in

2 $E_{\rm B}^{\rm cr}$ bins in the Breit frame

W bins in HCM frame

M_{eff} bins in the Breit frame

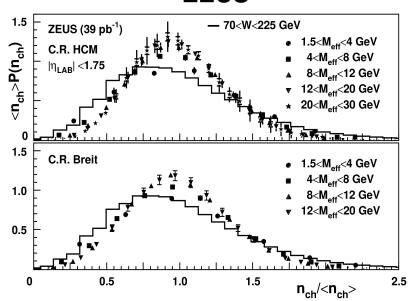
M_{eff} bins in the CR of HCM frame


ARIADNE is the best

HERWIG

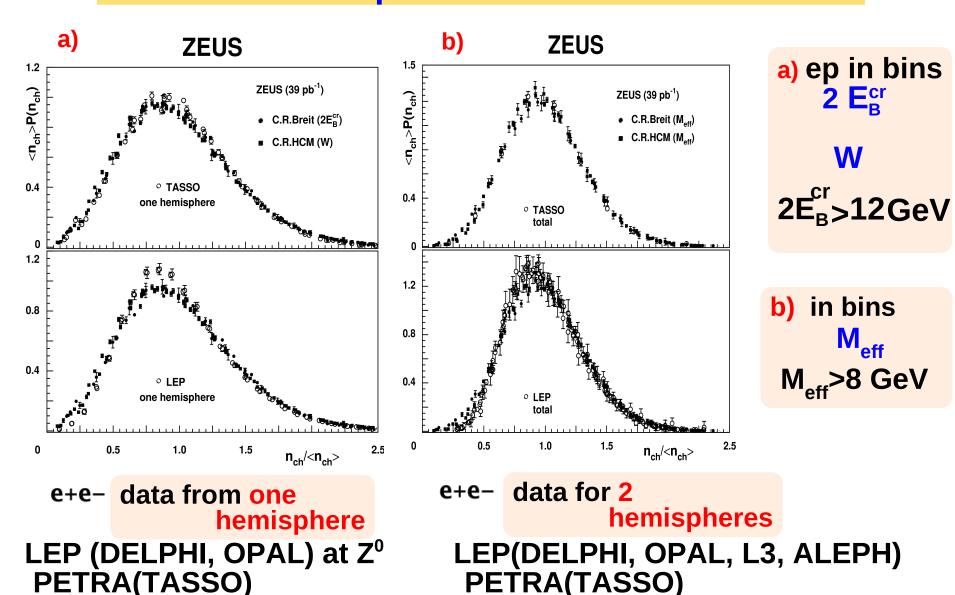
- longer tails for multiplicities
- → increase of the systematic uncertainties

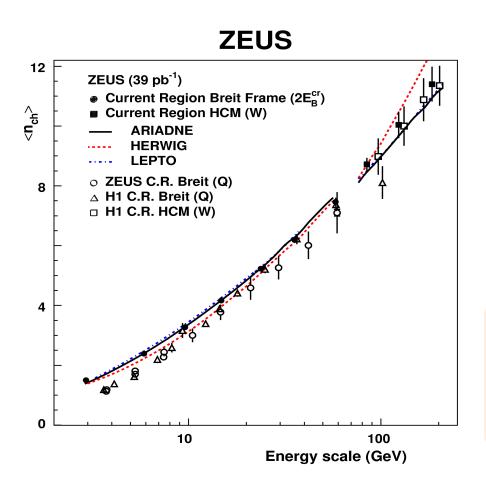
KNO SCALING


W and 2 E^{cr} bins ZEUS

Koba, Z.H.B.Nielson, P.Olsen N.P.B40(1972)317

M_{eff} bins


ZEUS


$$< n > P(n_{ch}) = \psi(n_{ch} / < n_{ch} >)$$

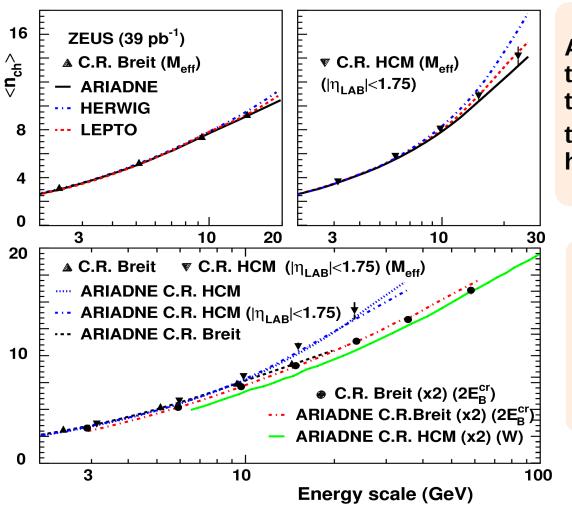
Scaling behaviour observed for HCM and Breit except $\mathbf{M}_{\mathrm{eff}}$ less than 4 GeV

KNO scaling comparison with e+e-

Energy dependence of average multiplicity

scales used:

2 E_Bcr

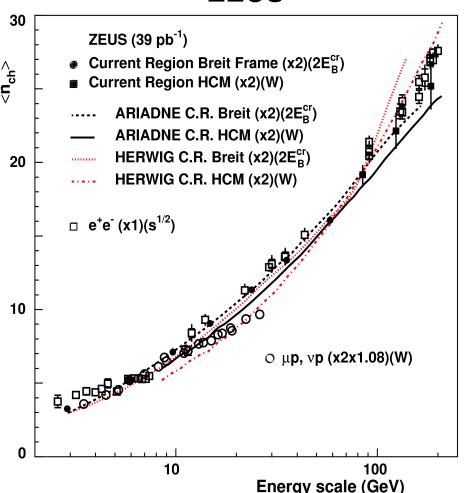

W

Mef

At low energy scales: differences if $2E_B^{cr}$ or Q used

M_{eff} energy scale

ZEUS



All three models describe the data reasonably well, in the last $M_{\rm eff}$ bin in C.R. HCM the Herwig prediction is too high

<n_{ch}> vs M_{eff} in the C.R. of the Breit frame shows the same behaviour as 2<n_{ch}>vs $2E_{B}^{cr.}$ <n_{ch}> vs M_{eff} rises faster in HCM than in the Breit frame

Summary plot

ZEUS

The measurements show good overall agreement with the those from other experiments. Exibit approximately the same dependence of the $< n_{ch} >$ on the respective energy scale.

- At low value of energy <n_{ch}> vs
 2 E_B^{cr} agrees well with e+e- in contrast the previous measurements vs Q.
 - data in C.R. of HCM (W) agree with the LEP data, but systematically below them
 - when using these scales, ep DIS data can be consistently compared with data from e+e-, μP and vP collisions over a wide energy region

Scaled momentum distributions of charged particles in dijet photoproduction

Data and motivation

Luminosity 359 pb⁻¹ collected in 2005-7 with E_{proton} = 920 GeV and E_{e} = 27.5 GeV

Photoproduction events (γp) were studied :

- required to have only two reconstructed jets
- energy scales in the range 19 to 38 GeV
- cones of various opening angles θ_c around the jet axis
- jets were reconstructed using the k_{τ} cluster algorithm

Tests of MLLA predictions

- comparison of the scaled momentum distribution in jets with MLLA , LPHD is assumed
- extract MLLA scale $arLambda_{
 m eff}$ and the LPHD parameter $\kappa_{
 m ch}$
- $\Lambda_{\rm eff}$ previously measured for ee , eP,PP, never for γ P
- is $\Lambda_{\rm eff}$ independent of interraction type? ee, ep, $P\bar{P}$, γP
- is $\Lambda_{\rm eff}$ independent of $E_{\rm jet}$ and θ_c as predicted?

The MLLA+LPHD Theoretical Framework

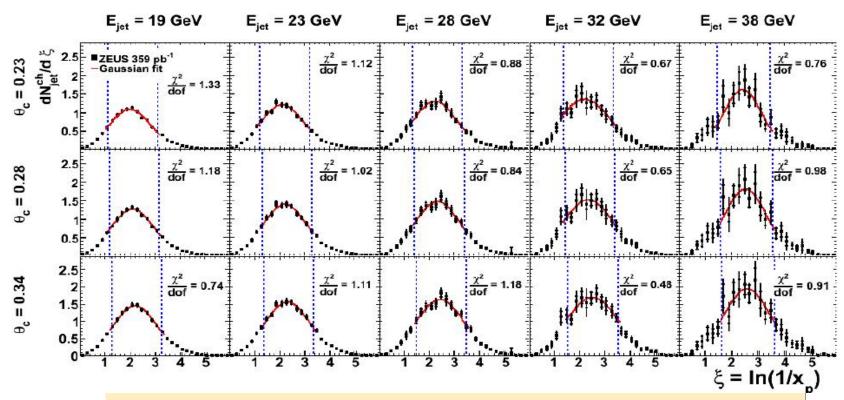
The Modified Leading Log Approximation

- All orders pQCD resummation
- Analitical description of parton evolution
- Predicts parton multiplicity and momenta
- MLLA describes fragmentation with 2 parameters:
 Q₀ self-imposed cut-off energy scale
 - $\Lambda_{\rm eff}$ QCD scale effective parameter
- We study MLLA within jets, where fragmentation is well drfined
- Λ_{eff} predicted to be universal
- Assuming Local Parton Hadron Duality MLLA predictions are directly comparable to the data

The Local Parton Hadron Duality (LPHD)

- Assumes hadronization is local and occurs at the end of parton shower
- Relates the observed hadron distributions to calculated parton distributions via constant factor, κ_{ch}
- K_{ch} is the ratio of the number of charged particles over the total number of partons produced during fragmentation
- 2 free parameters in MLLA + LPHD: Λ_{eff} and κ_{ch}

Measurement of $\Lambda_{ m eff}$ and $\kappa_{ m ch}$


Strategy of the analysis

- Measure scaled track momentum within jets, $x_p = \frac{P_{\text{track}}}{P_{\text{Jet}}}$.
- Plot scaled momentum distributions, $\xi = \ln\left(\frac{1}{x_p}\right)$, in bins of jet energy $E_{\text{Jet}} = \frac{M_{2j}}{2}$ (the hard scale) and θ_c (the opening angle).

To check the validity of the MLLA ptedictions fitting of the measured ξ distributions was done by

- 2 methods:
 - Gaussian around mean MLLA +LPHD theory
- $\xi_{
 m peak}$, $arLambda_{
 m eff}$ and $\kappa_{
 m ch}$ were extracted from fits

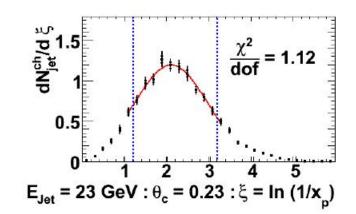
The measured ξ distributions

- The Gaussian fits are shown. $0.48 \le \chi^2/\text{dof} \le 1.33$
- Blue lines indicate fitted region, ± 1 around mean.

The Gaussian fit method

- Gives peak position of ξ distribution, ξ_{peak}
- \bullet $\,\xi_{\text{peak}}\,\text{gives}\,\Lambda_{\text{eff}}$ Only valid for Leading Order

The MLLA +LPHD fit method


- Gives $\Lambda_{\rm eff}$ and K (the normalization) directly from fit
- $\kappa_{\rm ch}$ is calculated from K
- Λ_{eff} has strong dependence on ambiguous fit range
- $\kappa_{\rm ch}$ only weakly dependant on the fitting range

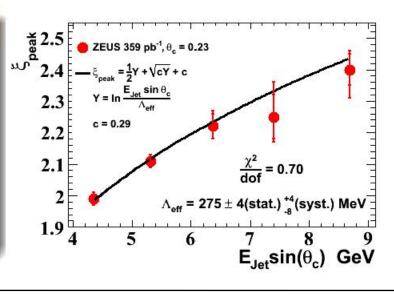
The results presented here use

- ullet The Gaussian method for ξ_{peak} and Λ_{eff}
- The MLLA+LPHD method for $\kappa_{
 m ch}$ and to cross check $\Lambda_{
 m eff}$

14/24

The Gaussian fit method

Peak position, ξ_{peak}


- Fit Gaussian ±1 around mean.
- $\forall \xi$, independently measure ξ_{peak} .

$$\Lambda_{\text{eff}} = \frac{E_{\text{Jet}} \sin(\theta_c)}{e^{(\sqrt{0.87 + 2\xi_{\text{peak}}} - 0.54)^2}} \quad (\text{@ LO})$$

Measuring Λ_{eff}

- Only use $\theta_c = 0.23$ energy points:
 - Different θ_c values are correlated;
 - MLLA looses validity at large θ_c .
- Fit equation to all 5 energy points.

$$\Lambda_{\rm eff} = 275 \pm 4 \, ({\rm stat.})^{+4}_{-8} \, ({\rm syst.}) \, {\rm MeV}$$

The MLLA+ LPHD fit method

Momentum distribution of partons from a gluon is given by:

•
$$\bar{D}_{\mathrm{g-Jet}}^{\lim}\left(\ln\left(\frac{1}{x_{p}}\right),Y\right) = \frac{4C_{f}}{b}\Gamma(B)\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{-B\alpha}\left[\frac{\cosh\alpha+(1-2\zeta)\sinh\alpha}{\frac{4N_{c}}{b}Y_{\frac{\alpha}{\sinh\alpha}}}\right]^{\frac{D}{2}}$$

$$\cdot I_{B}\left(\sqrt{\frac{16N_{c}}{b}Y_{\frac{\alpha}{\sinh\alpha}}}\left[\cosh\alpha+(1-2\zeta)\sinh\alpha\right]\right)\frac{d\tau}{\pi}$$

• Valid for: $\ln\left(\frac{1}{x_{\rho}\ll 1}\right) \leq \ln\left(\frac{1}{x_{\rho}}\right) \leq \ln\left(\frac{M_{2j}}{2P_0}\right)$ $P_0 = \text{Upper bound}$

For number of flavours, $N_f = 3$, and number of colours, $N_c = 3$

- $C_f = \frac{9}{4}$, b = 9, B = 1.247.
- I_B is the modified Bessel function of order B.
- $\alpha = \alpha_0 + i\tau$, where α_0 is determined by $\tanh \alpha_0 = 2\zeta 1$

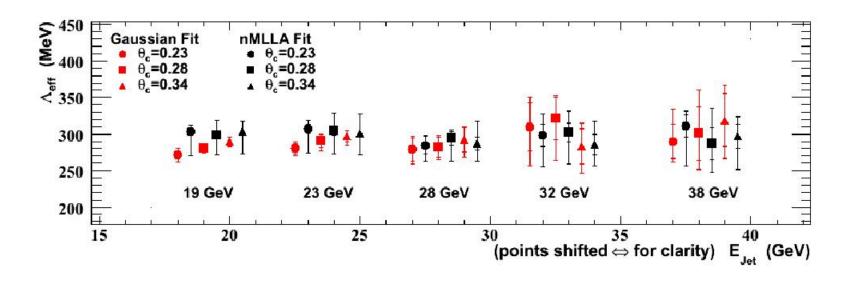
•
$$\zeta = 1 - \frac{\ln\left(\frac{1}{\chi_p}\right)}{Y}$$
 and $Y = \ln\left(\frac{E_{\text{Jet}}\sin(\theta_c)}{\Lambda_{\text{eff}}}\right)$ $\bar{D}_{\text{q-Jet}}^{\lim} = \frac{1}{r}\bar{D}_{\text{g-Jet}}^{\lim}$

Quarks, gluons and the next-to-MLLA predictions

Quark and gluon jet mixture

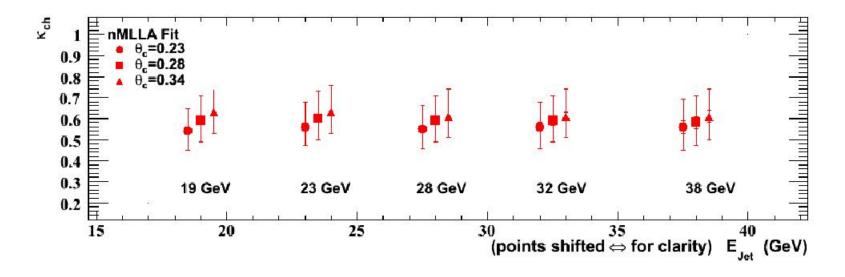
• In γP events there is a mix of quark and gluon jets.

$$\bar{D}_{\mathrm{mix}}^{\mathrm{lim}} = \left(\epsilon_{\mathrm{g}} + \frac{1 - \epsilon_{\mathrm{g}}}{r}\right) \bar{D}_{\mathrm{g-Jet}}^{\mathrm{lim}}$$
, where ϵ_{g} is the fraction of gluon jets.


Energy (GeV)		23	28	32	38
$\epsilon_{ m g}$ (From PYTHIA)	0.203	0.213	0.211	0.227	0.242

The so called "next-to-MLLA" predictions

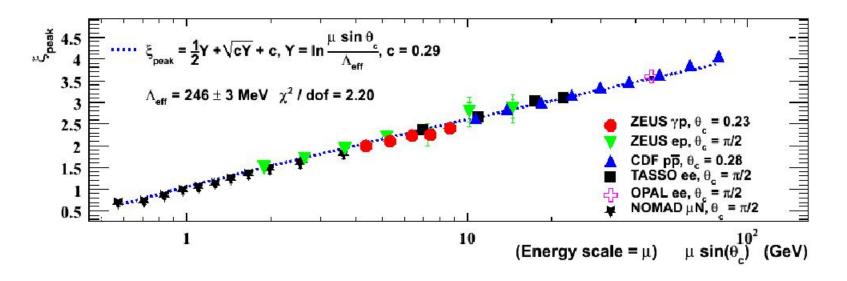
- Not actually higher order calculation, but a modification of MLLA.
- In nMLLA, $\bar{D}_{ ext{mix}}^{ ext{lim}} = F_{ ext{nMLLA}} \left(\epsilon_{ ext{g}} + rac{1 \epsilon_{ ext{g}}}{r} \right) \bar{D}_{ ext{g-Jet}}^{ ext{lim}}$
- Where $r=1.6\pm0.2$ and $F_{\rm nMLLA}=1.3\pm0.2$ (from theory).
- When fitting to data the normalisation can be expressed as:


$$K = \kappa_{\rm ch} F_{\rm nMLLA} \left(\epsilon_{\rm g} + \frac{1 - \epsilon_{\rm g}}{r} \right)$$

Λ_{eff} - Comparison of extraction methods

Λ_{eff} extracted from 359pb¹ ZEUS data via both methods

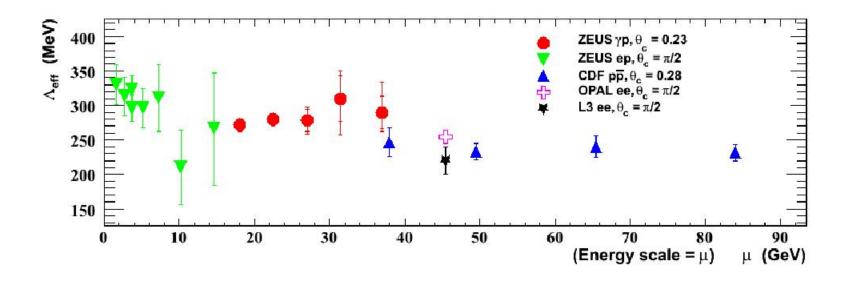
- $\forall \xi$, independently extract Λ_{eff} : Red = Gaussian. Black = nMLLA.
- $\Lambda_{\rm eff}$ has a weak dependence on θ_c , no dependence on scale.
- nMLLA, $\theta_c = 0.23$: $\Lambda_{\rm eff} = 304 \pm 6 \, ({\rm stat.})^{+8}_{-32} \, ({\rm syst.})$ MeV
- Large nMLLA systematics come from ambiguous fitting range.
- nMLLA regularisation scheme \Rightarrow Parton cut-off at $p_T^{\mathrm{rel,pl}} = \Lambda_{\mathrm{eff}}$



κ_{ch} extracted from 359pb¹ ZEUS data via nMLLA method

- $\kappa_{\rm ch}$ comes from the normalisation of ξ
- $\kappa_{\rm ch}$ is insensitive to the ambiguous fitting range.
- $\kappa_{\rm ch}$ has a weak dependence on θ_c , no dependence on scale.
- Theoretical uncertainties dominate the overall uncertainty.

$$\kappa_{\rm ch} = 0.55 \pm 0.01 \, ({\rm stat.})^{+0.03}_{-0.02} \, ({\rm syst.})^{+0.11}_{-0.09} \, ({\rm theo.})$$


Global Comparisons - ξ_{peak}

Global fit gives $\Lambda_{\rm eff} = 246 \pm 3 \, {\rm MeV}$ with $\chi^2/{\rm dof} = 2.20$

- The fit assumes that $\Lambda_{\rm eff}$ is independent of scale and θ_c .
- Both ZEUS and CDF observe a weak θ_c dependence.
- CDF also observe a weak scale dependence:
 - Λ_{eff} observed to decrease with increasing energy.
- May explain why this is inconsistent with ZEUS only fit result.

Global Comparisons - Λ_{eff}

$\Lambda_{\rm eff}$ as a function of energy scale for different experiments

- 359pb⁻¹ ZEUS data fills the gap from 19 → 38 GeV.
- First measurement of $\Lambda_{\rm eff}$ from γp process.

Summary

Summary

- Scaled momentum distributions have been measured in dijet events in 359pb⁻¹ γp ZEUS data.
- Λ_{eff} and κ_{ch} have been extracted at energy scales from 19 \rightarrow 38 GeV.

$$\Lambda_{\rm eff} = 275 \pm 4 \, ({\rm stat.})^{+4}_{-8} \, ({\rm syst.}) \, {\rm MeV}$$
 $\kappa_{\rm ch} = 0.55 \pm 0.01 \, ({\rm stat.})^{+0.03}_{-0.02} \, ({\rm syst.})^{+0.11}_{-0.09} \, ({\rm theo.})$

Publication

Pre-print on arXiv : hep-ex/0904.3466

Conclusions

Hadronic spectra proved to be a powerful tool for study of various aspects of the multiparticle dynamics:

Multiplicity studies in NC DIS:

- detailed comparison multiplicity distributions with MC models
- KNO scaling was studied with different energy scales
- energy dependence of multiplicity was investigated for different energy scales and detailed comparison with e+ewas done

Scaled momentum distribution:

- scaled momentum distributions were measured
- $-\,\Lambda_{\rm eff}$ and LPHD and $\kappa_{\rm ch}$ were extracted

Still rich program of studies with ZEUS : many results not shown, many studies in progress...

Thank you for your attention!

Many thanks to Krakow for hospitality!