

Charm and strange particles production at ZEUS

V. Aushev For the ZEUS Collaboration

The 2009 Europhysics Conference on High Energy Physics 16-22 July 2009 Krakow, Poland

Outline

- ZEUS detector at the HERA
- Excited charm and charm-strange mesons
- Inclusive K0sK0s resonance production
- Summary

ZEUS detector at the HERA

- ZEUS: 56 universities and laboratories, 18 countries
- HERA the only ep collider in the world
- HERA II (2002-2007): upgraded detectors, longitudinally polarised e± beams

Complete 4n detector

Tracking:

- central tracking detector
- Silicon µ-Vtx

(operate in a B field of 1.43 T)

Calorimeters:

- Uranium-scintillator (CAL)
- Instrumented-iron (BAC)

Muon chambers

Motivation for study excited charm and charm strange production

Heavy-quark spectroscopy has recently undergone a renaissance with the discovery of several new states:

- ♦ Non-strange excited charm mesons $D_1(2420)^{\circ,\pm}$ and $D_2 * (2460)^{\circ,\pm}$
- Charm-strange excited mesons $D_{s1}(2536) \pm$ and $D_{s2}(2573) \pm$
- Recently, Supported Heavy Quark Effective Theory (HQET) predictions
 D°*(2400)°,± and D1(2430)°
- ✤ Recent discovery charm-strange Ds0*(2317)± and Ds1(2460)±
- Predicted: broad non-strange charged excited charm meson with JP=1+ has not yet been observed.
- * Predicted: radially excited charm $D' \rightarrow D\pi\pi$ and $D^{*'} \rightarrow D^{*}\pi\pi$, ~2.6 GeV. Narrow resonance at 2637 MeV with $D^{*}\pi^{+}\pi^{-}$ reported by DELPHI, however OPAL – no evidence.

The properties of these states challenge the theoretical description of heavy-quark resonances. Further measurement of excited charm and charm-strange mesons are important!

Excited charm and charm-strange mesons

• Large charm production cross sections at HERA allow to search for excited charm states

Look for orbitally excited states: $D_1(2420)^0 \to D^{*\pm}\pi^{\mp}$ $J^P = 1^+$ $D_2^*(2460)^0 \to D^{*\pm}\pi^{\mp}$ $J^P = 2^{++}$ $D_2^*(2460)^0 \to D^{\pm}\pi^{\mp}$ $J^P = 1^+$ state cannot decay to $D\pi$ $D_{s1}(2536)^{\pm} \to D^{*\pm}K_s^0, D^{*0}K^{\pm}$ $J^P = 1^+$

Search for radially excited states: $D^{*'}(2640)^{\pm} \rightarrow D^{*\pm}\pi^{+}\pi^{-}$ (DELPHI) $J^{P} = 1^{-}$?

ZEUS HERA I 1995 - 2000 (126 pb⁻¹) DIS + PHP

Eur.Phys.J C60,25(2009)

Study of the excited charm mesons $D_1(2420)^o, D_2 * (2460)^o$

 $D_1(2420)^o \to D^{*+} \pi^ D_2^{*}(2460)^o \to D^{*+} \pi^-, D^+ \pi^-$

combining each selected D*+ (or D+) candidate with an additional track, assumed to be a pion, with a charge opposite to that of the D*+ (or D+) candidate.

Reconstruction of lowest-mass charm mesons: *D**+

D*+ mesons were identified using the two decay channels:

 $D \stackrel{*}{\to} D0\pi s^+ \rightarrow (K^-\pi^+)\pi s^+$ $\Delta M = M(K\pi\pi) - M(K\pi), \qquad Signal: 39500$

 $D \stackrel{*}{\to} D0\pi s \rightarrow (K - \pi + \pi + \pi -)\pi s + \Delta M = M(K\pi\pi\pi\pi s) - M(K\pi\pi\pi), Signal: 17300$

Background-wrong charge combination. Yellow band - ranges used for excited charm mesons

Reconstruction of lowest-mass charm mesons: **D**+ and **D**0

 $D^+ \rightarrow K^- \pi^+ \pi^+$

Width (D+)=12.9 MeV; (detector resolution)

Guts: pτ (D)>2.8 GeV |η(D)|<1.6 Yellow band corresponds to ranges used for excited charm mesons

 $D^0 \to K^- \pi^+$

Width (D0)=17.4 MeV;

Excited charm mesons: D1(2420)° and D2*(2460)°

D_1° and $D_2 *^{\circ}$ in four helicity bins

Used helicity angular distribution to extract *D1(2420)°* and *D2*(2460)°* yields and properties *h* -helicity parameter (h=3 for pure D-wave)

 $dN/d\cos\alpha \approx 1 + h\cos^2\alpha$

Simultaneous fit including all contributions

final state	$D^{*+}\pi_a$ $D^+\pi_a$		
Signal yields			
$N(D_1^0)$	3110 ± 340		
$N(D_2^{\ast 0})$	870 ± 170	690 ± 160	

 $M(D_1^0) = 2420.5 \pm 2.1 (\text{stat.}) \pm 0.9 (\text{syst.}) \pm 0.2 (\text{PDG}) \text{ MeV},$

 $M(D_2^{*0}) = 2469.1 \pm 3.7 (\text{stat.})^{+1.2}_{-1.3} (\text{syst.}) \pm 0.2 (\text{PDG}) \text{ MeV.}$

Fitted masses agree with PDG

$$\begin{split} \Gamma(D_1^0) &= 53.2 \pm 7.2^{+3.3}_{-4.9} \, MeV(PDG:20.4 \pm 1.7 \, MeV) \\ h(D_1^0) &= 5.9^{+3.0}_{-1.7}(stat.)^{+2.4}_{-1.0}(syst.) \quad \text{(CLEO:} 2.74^{+1.40}_{-0.93}) \\ \text{Roughly consistent with pure D-wave (h=3)} \end{split}$$

Excited charm mesons: Ds1+

- $D_{S1+} \rightarrow D^{*+}(both \ decay \ channels \) \ with \underline{K^o_{S-}} = \pi + \pi$ -
- $D_{S1+} \rightarrow (D*^{\circ} \text{ with } K\pm)$
- To extract *Ds1*+ yields and properties: fit using simultaneously values of M(*D*^o K±*) and M(*D*+ K^os*) in four helicity intervals
- Clear D_{s1}(2536)+ signals! Measured D_{s1+} mass in good agreement with the world average value!

$$M(D_{s1}^+) = 2535.57_{-0.41}^{+0.44}$$
(stat.) ± 0.10 (syst.) ± 0.17 (PDG) MeV

final state	$D^{*+}K^0_S$	$D^0 K_a$		
Signal yields				
$N(D_{s1}^+)$	100 ± 13	136 ± 27		

Fitted D_{s1} helicity parameter: $h(D_{s1}) = -0.74^{+0.23}_{-0.17}(stat.)^{+0.06}_{-0.05}(syst.)$ Inconsistent with pure 1⁺ D-wave (h=3) Barely consistent with pure 1⁺ S-wave (h=0) \rightarrow Significant S-D mixing

Branching ratios and fragmentation fractions

$$\frac{B_{D_2^{*0} \to D^+ \pi^-}}{B_{D_2^{*0} \to D^{*+} \pi^-}} = 2.8 \pm 0.8 \text{(stat.)}_{-0.6}^{+0.5} \text{(syst.)} \qquad 2.3 \pm 0.6 \text{ (PDG)}$$
$$\frac{B_{D_{s1}^+ \to D^{*0} K^+}}{B_{D_{s1}^+ \to D^{*+} K^0}} = 2.3 \pm 0.6 \text{(stat.)} \pm 0.3 \text{(syst.)} \qquad 1.27 \pm 0.21 \text{ (PDG)}$$

Assuming I-spin conservation for D_1^0, D_2^{*0} and $B_{D_{s1}^+ \to D^{*+}K^0} + B_{D_{s1}^+ \to D^{*0}K^+} = 1$ yields fragmentation functions and strangeness suppression of excited D mesons $f(c \to D_{s1}^+)/f(c \to D_1^0) = 0.31 \pm 0.06^{+0.05}_{-0.04}$

	• · · · · · ·	$f(c \to D_2^{*0})[\%]$	$f(c \to D_{s1}^+)[\%]$
ZEUS	$3.5 \pm 0.4^{+0.4}_{-0.6}$	$3.8 \pm 0.7^{+0.5}_{-0.6}$	$1.11 \pm 0.16^{+0.08}_{-0.10}$
OPAL	2.1 ± 0.8	5.2 ± 2.6	$1.6 \pm 0.4 \pm 0.3$
ALEPH			$0.94 \pm 0.22 \pm 0.07$

 \Rightarrow Frag. fractions for excited *D* mesons in *ep* and *e^+e^-* consistent

Search for radially excited charm meson D*'(2640)±

$D*'_+ \rightarrow D*_+ \pi_+ \pi_-$

- combining each selected *D**+ candidate with two additional tracks with opposite charges.
- No radially excited *D*(2640)* ± charm meson observed.

Upper limit:

$$f(c \to D^{*\prime +}) \cdot \mathcal{B}_{D^{*\prime +} \to D^{*+} \pi^+ \pi^-} < 0.4\%$$
 (95% C.L.).

OPAL result: < 0.9%

D*'± signal window - theoretical predictions solid curve - fit background , shaded histogram - Monte Carlo D*'± signal, normalised to upper limit on top of the fit.

Motivation for study KOsKOs resonance production

- The SM allows glueballs (gg), hybrids ($q\overline{q}g$) and mixed states
- The scalar meson sector $(J^{P}=0^{+})$ has too many established I = 0 states: $f_{0}(980), f_{0}(1370), f_{0}(1500), f_{0}(1710)$

only two can fit into the $q\overline{q}$ nonent

- Lattice calculations predict that the lightest glueball has J^{PC} = 0⁺⁺ and mass in range 1550 – 1750 MeV
- It can mix with qq (I = 0) states close in mass
- $f_0(1710)$ is considered to be a possible glueball candidate
- The $K_S^0 K_S^0$ system can couple to $J^P = 0^+$ and 2^+
- $\rightarrow K_S^0 K_S^0$ is a good place to search for the lightest 0⁺ glueball

Phys. Rev. Lett. 101, 112003 (2008)

K0s mass distribution for events with \geq two K0s candidates

- ZEUS data 1996- 2007
- Signal window for M(*K*0s*K*0s) analysis: $481 \le M(\pi + \pi -) \le 515 \text{ MeV}$
- No. of K0s candidates in signal window ~ 1,258,400
- Clean *K*0s signal; background ~8%

<u>Cuts:</u>

- pT(K0s)>0.25 GeV
- 2D Collinearity angle <0.12 rad; (angle in *xy*-plane between *K*0s momentum vector and vector defined by interaction point and decay vertex)
- |Zvtx| <50;

 $M(K_S^0K_S^0) = 497.49 \text{ MeV}$ consistent with PDG $\sigma = 4.1 \text{ MeV}$ consistent with detector resolution

KOsKOs mass spectrum (incoherent fit)

Fit (as in L3) to background plus incoherent sum of 3 modified RBW resonance, *R*, of the form $F(m) = C_R \frac{M_R \Gamma_R}{\left(M_R^2 - m^2\right)^2 + M_R^2 \Gamma_R^2}$

representing the peaks $f_2(1270)/a_2(1320), f_2'(1525), f_0(1710)$ C_R = Amplitude of resonance R M_R = Mass of resonance R Γ_R = Variable width of resonance R m = $K_S^0 K_S^0$ invariant mass

 $\chi^2/ndf = 96/95$

Bad fit without $f_0(1710) \Rightarrow f_0(1710)$ required Dip between f_2/a_2 and f'_2 not reproduced

KOsKOs mass spectrum (coherent fit)

 K0sK0s invariant-mass distribution was reconstructed by combining two K0s candidates selected in the mass window;

M, Γ of all resonances – free parameters in the fit.

Bottom plot background subtracted $M(K_S^0K_S^0)$ spectrum with fitted BW functions.

Good fit $\chi^2/ndf = 86/97$. Peak around 1.3 GeV suppressed due to destructive interference between $f_2(1270)$ and $a_2(1320)$. Dip between $f_2(1270)/a_2(1320)$ and $f_2'(1525)$ is well reproduced.

No. of fitted $f_0(1710)$ events: $4058\pm820 \sim 5\sigma$ significance ⁷ Fit without $f_0(1710)$ strongly disfavoured $\chi^2/ndf = 162/97$

Results

Fit	No inte	No interference		Interference		PDG 2007 Values	
χ^2/ndf	96	96/95		86/97			
in MeV	Mass	Width	Mass	Width	Mass	Width	
$f_2(1270)$	$-$ 1304 \pm 0	61 ± 11	1268 ± 10	176 ± 17	1275.4 ± 1.1	$185.2\substack{+3.1 \\ -2.5}$	
$a_2^0(1320)$			1257 ± 9	114 ± 14	1318.3 ± 0.6	107 ± 5	
$f_2^\prime(1525)$	$1523\pm3^{+2}_{-8}$	$71\pm5^{+17}_{-2}$	$1512\pm3^{+1.4}_{-0.5}$	$83\pm9^{+5}_{-4}$	1525 ± 5	73^{+6}_{-5}	
$f_0(1710)$	$1692\pm6^{+9}_{-3}$	$125 \pm 12^{+19}_{-32}$	$1701 \pm 5^{+5}_{-3}$	$100\pm24^{+7}_{-22}$	1724 ± 7	137 ± 8	

For fit with interference:

- $a_2(1320)$ mass below PDG value. Similar shift, attributed to destructive $f_2(1270)/a_2(1320)$ interference, seen by Faiman *et al*.
- Widths of all observed resonances close to PDG values
- $f_2'(1525)$, $f_0(1710)$ masses below PDG; uncertainties compatible with PDG
- One of the best $f_0(1710)$ reported signals: 4058±820 events ~5 s.d.

f'2(1525) and f0(1710): mass and width

Summary

- Sizeable production of the excited charm and charm-strange mesons was observed in *ep* interactions.
- Measured masses of the *D*₁°, *D*₂*° and *D*₅1+ in reasonable agreement with the world average values. *D*₁° width 53.2 MeV above PDG 20.4 MeV
- measured D_1^{o} helicity parameter h=5.9 consistent with prediction for pure D-wave.
- Ds1 + helicity parameter h = -0.74, inconsistent with prediction for a pure D- or S- waves. Suggests significant contributions of both waves.
- Ratios of dominant branching fractions are in agreement with the world average values.
- Fraction of c quarks hadronising into *D1*°, *D2**° or *Ds*1+ are consistent with obtained in e+e-, agreement with charm fragmentation universality;
- No radially excited $D*(2640) \pm$ meson was observed.

Summary(2)

- Observed three enhancements corresponding to f2(1270)/a2(1320), f2'(1525) and f0(1710);
- f₀(1710) with 5σ significance, has mass consistent with glueball candidate.
- No state observed heavier than fo;
- Masses and widths of f₂'(1525) and f₀(1710) consistent with PDG;

Backup- L3 e+e- LEP experiment in two-photon collisions Phys. Lett. B501, 173 (2001)

They see 3 distinct peaks over a low background and attribute them to $f_2(1270)/a_2(1320)$, $f_2'(1525)$ and $f_0(1710)$

Spectrum dominated by the formation of the $f_2'(1525)$ tensor meson $f_0(1710)$ signal of ~4 s.d. is seen Maximum likelihood fit with 3 BW Functions plus 2nd order polynomial $f_2'(1525)$ parameters consistent with PDG

	$f_2(1270)/a_2(1320)$	$f_2^\prime(1525)$	$f_0(1710)$
Mass (MeV)	1239 ± 6	1523 ± 6	1767 ± 14
Width (MeV)	78 ± 19	100 ± 15	187 ± 60
Events	123 ± 22	331 ± 37	221 ± 55

Backup- *TASSO* γγ ->K+K-, K0sK0s Phys. Lett.B121,216,1983

Results interpreted by interference effects between the 3 $J^P=2^+$ resonances $f_2(1270)$, $a_2(1320)$, $f_2'(1525)$ For the same spin-parity, production amplitude is sum of 3 coherent BW's $C_1 \cdot BW(f_2(1270)) \pm C_2 \cdot BW(a_2(1320))$ $+ C_3 \cdot BW(f_2(1525))$ According to SU(3), sign of 2nd term is + for K^+K^- ; - for $K_S^0K_S^0$ Faiman et al., Phys.Lett. B59, 269 (1975)

Backup- Coherent 2+ states

	$f_{2}(1270)$	$a_2(1320)$	$f_{2}'(1525)$
Isospin I	0	1	0
Quark content	$(uar{u}+dar{d})/\sqrt{2}$	$(uar{u}-dar{d})/\sqrt{2}$	$sar{s}$
Charge factor	$(\frac{2}{3} \cdot \frac{2}{3} + \frac{1}{3} \cdot \frac{1}{3})\frac{1}{2}$	$(\frac{2}{3} \cdot \frac{2}{3} - \frac{1}{3} \cdot \frac{1}{3})\frac{1}{2}$	$\frac{1}{3} \cdot \frac{1}{3}$
Amplitude ratio	$C_1 = 5$	$C_2 = -3$	$C_3=2$

→ The appropriate function to fit the M($K_S^0 K_S^0$) spectra for an electromagnetic production process assuming SU(3) symmetry is H.J. Lipkin, private communication $F(m) = a \Big[5 \cdot BW(f_2(1270)) - 3 \cdot BW(a_2(1320)) + 2 \cdot BW(f_2(1525)) \Big]^2$ $+ b \Big[BW(f_0(1710)) \Big]^2 + c \cdot background$

a, b, c are free parameters BW is a relativistic BW amplitude: BW(R) = $\frac{M_R \sqrt{\Gamma_R}}{M_R^2 - m^2 - iM_R \Gamma_R}$