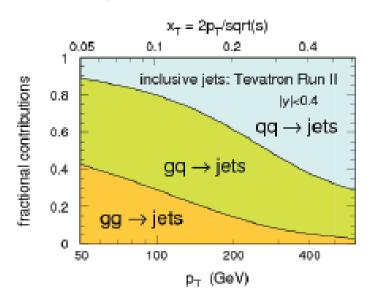


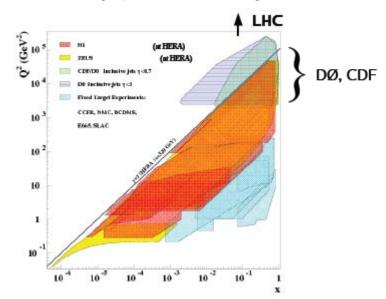






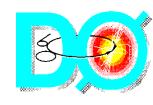
# High PT jet Physics

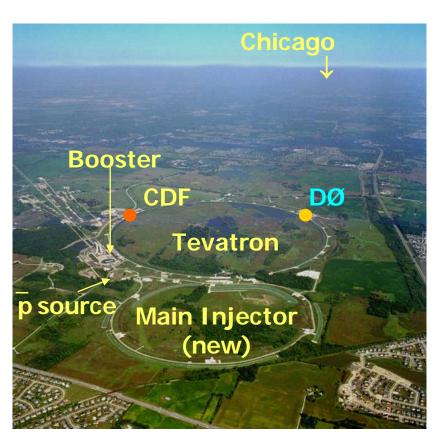




Jet production at a hadron collider is sensitive to:

- Dynamics of interaction (QCD or "New Physics"?)
- Proton structure (PDFs)

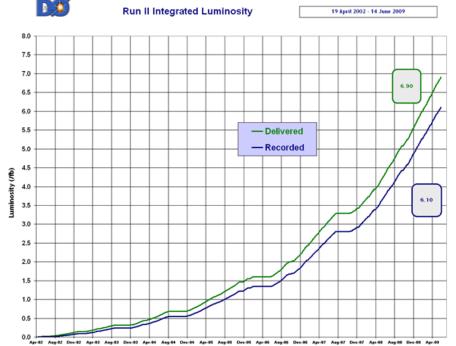
Before we can use tevatron jet data in PDF fits based on QCD matrix elements, we need:


Independent confirmation that jets are really produced by QCD







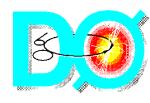


#### The Run II Tevatron

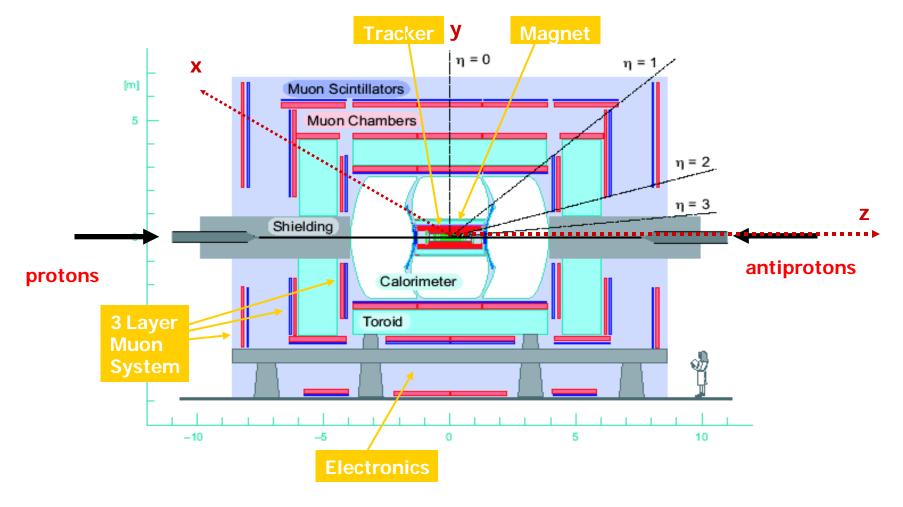




 $\overline{p}$  collisions at

$$\sqrt{s} = 1.96 TeV$$





Analyses presented here uses up to 0.7 fb<sup>-1</sup> of luminosity

More than 6 fb<sup>-1</sup> of luminosity recorded



#### DØ Detector







## Data and Jet Selection



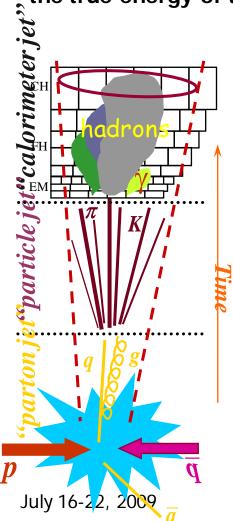
#### **Data Set**

~0.7 fb<sup>-1</sup> of Luminosity is used by this analysis.

#### **Triggers:**

Use a single jet trigger with  $P_T$  thresholds of 15, 25, 45, 65, 95, 125 GeV Dijet mass trigger with  $M_{ii}$  threshold of 250 and 430 GeV

#### **Event Selection Criteria**


- Required good performance of all relevant subdetectors
- Events were required to have not much missing transverse energy
- Events with central position of the Z vertex were accepted
- Required both leading jets to pass identification requirements



### Jet Energy Scale



Aim is to go from measured energy in calorimeter using cone algorithm to the true energy of the particle jets



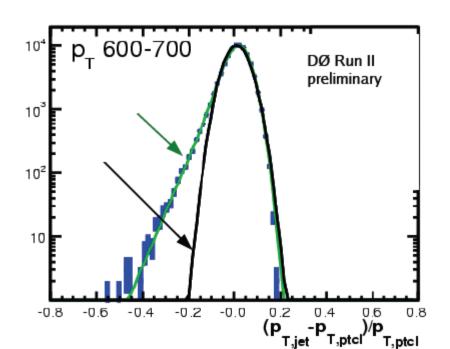
$$E_{ptcl} = \frac{E_{cal} - Offset}{(F_n \cdot R) \cdot S} \cdot k_{bias}$$

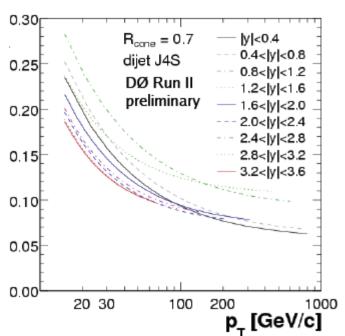
Offset correction takes into account electronic noise, pile-up, and multiple interaction

Response, R, is the calorimeter response to particle jets

Showering correction, S, is the fraction of the shower contained within the cone




### Jet PT resolution




 $P_T$  resolution is obtained from Dijet data using  $P_T$  asymmetry, and corrected for soft radiation and particle level imbalance.

$$A = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}} \quad \Longrightarrow \quad \frac{\sigma_{p_T}}{p_T} = \sqrt{2}\sigma_A$$

We took into account non-Gaussian tails for high P<sub>T</sub> jets

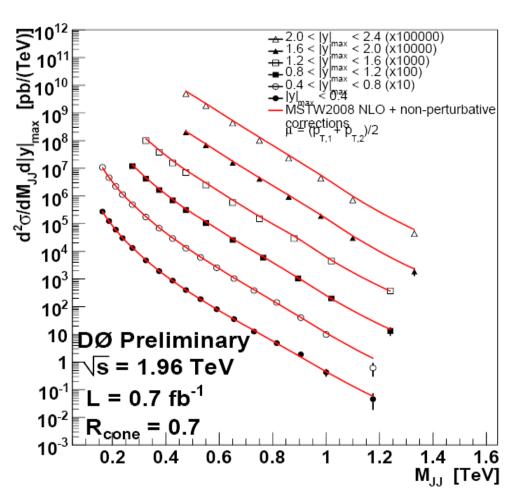


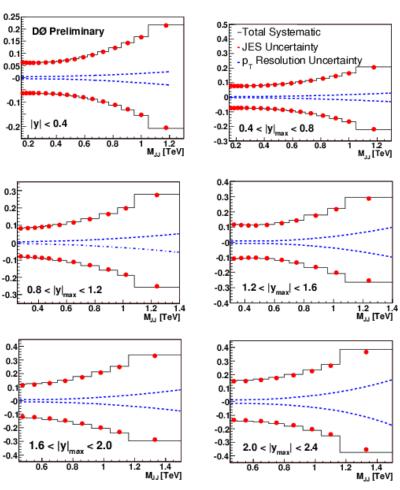




### **Data Correction**




Correction and the uncertainties are determined using MC


- Jet pT resolutions
- Jet eta, phi resolutions
- Inefficiencies of jet selection quality criteria
- JES uncertainties
- Inefficiency due to Z-vertex selection criteria
- Muon/Neutrino corrections to jet energies

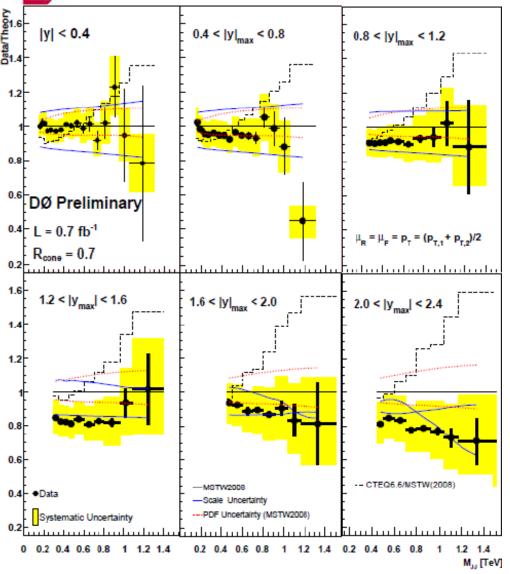


## Dijet Mass Cross Section








**Unfolded Cross section** 

**Systematic Uncertainties** 



### Dijet Mass: Data Vs Theory

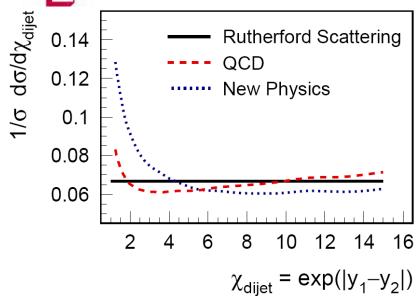




#### Theory:

NLO pQCD (fastNLO/NLOJET ++)

PDF MSTW2008


$$\mu_r = \mu_f = \langle pT \rangle$$

Good agreement between data and theory



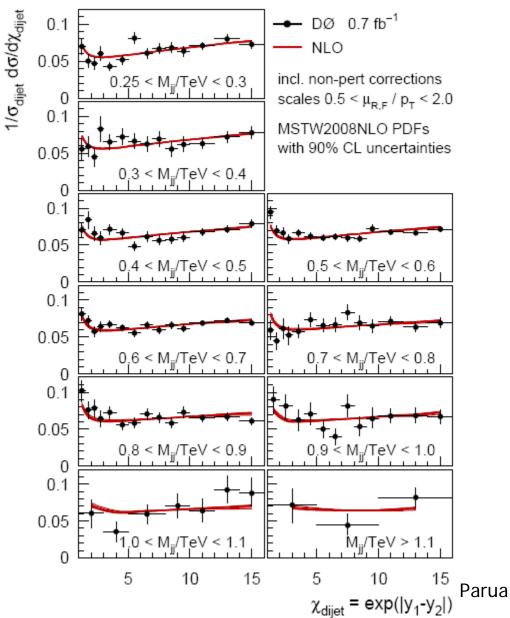
# Dijet Angular Distributions S





- → χ is an excellent variable to disentangle QCD from "New Physics"
- ➤ Normalized distributions
- ➤ Reduction of experimental and theoretical uncertainties


Phase space for the analysis:

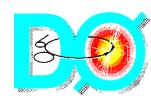

$$\chi$$
 < 16

Yboost = 
$$0.5*(y1+y2) < 1 = > |y| < 2.4$$



### Results – chi vs. pQCD






Data points include both stat and syst uncertainties

- Data are well described by PQCD (χ² ~ 127)
- → Theory uncertainties (PDFs and scales) are very small



### New Physics Models



#### **Quark Compositeness:**

Symmetries in groups of particles like atoms or hadrons have often been explained by substructure.

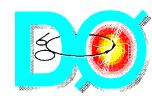
Hypothetically quarks could also be made of other particles.

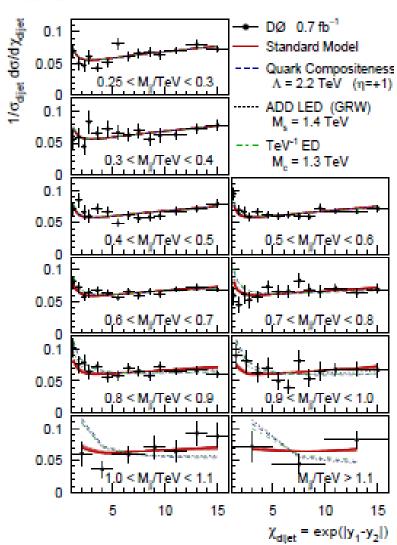
Parameters : the energy Scale  $\Lambda$ , and interference term  $\lambda$ 

#### **ADD Large extra dimension:**

This model assumes that extra dimensions exist in which gravity is allowed to propagate.

Parameter: Planck scale M<sub>s</sub> and number n of large extra dimensions

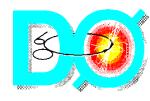

#### TeV-1 Extra Dimensions:


Instead of graviton exchange of virtual Kaluza-Klein excitations is considered

Parameter: compactification scale M<sub>c</sub>



### χ vs. New Physics






- → New Physics models change shape
- → Effects depends on dijet mass
- → Data prefers Standard Model



### Limits on New Physics

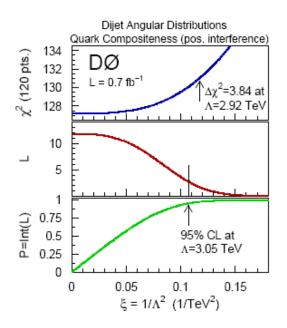


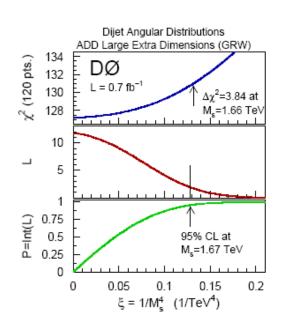
#### **Set Limits to**

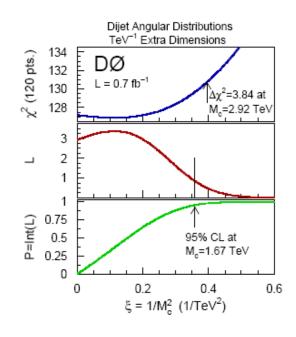
- Quark Compositeness (scale Λ)
- ADD Large Extra Dimensions (scale Ms, n)
- TeV-1 Extra Dimensions (scale Mc)

#### Matrix Elements taken from following references

- Quark Compositeness Contact Interactions
   P. Chiappetta, M. Perrottet, Phys. Lett. B 253: 489 (1991)
- ADD Large Extra Dimensions
  D. Atwood, S. Bar-Shalom, A. Soni, Phys. Rev. D 62 (2000)
- TeV-1 Extra Dimensions
   K. Cheung, G. Landsberg, Phys. Rev. D 65 (2002)


July 16-2: 
$$\sigma_{\mathrm{NP}}^{\mathrm{NLO}} = \sigma_{\mathrm{QCD}}^{\mathrm{NLO}} \cdot \frac{\sigma_{\mathrm{NP}}^{\mathrm{LO}}}{\sigma_{\mathrm{QCD}}^{\mathrm{LO}}} = \sigma_{\mathrm{NP}}^{\mathrm{LO}} \cdot \frac{\sigma_{\mathrm{QCD}}^{\mathrm{NLO}}}{\sigma_{\mathrm{QCD}}^{\mathrm{LO}}}$$
.





# Limits on New Physics



16







#### Bayesian 95% C.L Limits:

(prior flat in  $\xi$  ) 3.06 1.67 1.67

(prior flat in  $\xi^2$  ) 2.84 1.59 1.55

July 16-22, 2009 Nirmalya Parua 16



# Limits on New Physics



|                                     | Prior flat in |      | Prior flat in |      | $\Delta \chi^2 = 3.84$ |      |
|-------------------------------------|---------------|------|---------------|------|------------------------|------|
|                                     | NP Lagrang.   |      | NP x-section  |      | criterion              |      |
| Model (parameter)                   | Exp.          | Obs. | Exp.          | Obs. | Exp.                   | Obs. |
| Quark comp. $(\Lambda)$             |               |      |               |      |                        |      |
| $\eta = +1$                         | 2.91          | 3.06 | 2.76          | 2.84 | 2.80                   | 2.92 |
| $\eta = -1$                         | 2.97          | 3.06 | 2.75          | 2.82 | 2.82                   | 2.96 |
| $\text{TeV}^{-1} \text{ ED } (M_C)$ | 1.73          | 1.67 | 1.60          | 1.55 | 1.66                   | 1.59 |
| ADD LED $(M_S)$                     |               |      |               |      |                        |      |
| GRW                                 | 1.53          | 1.67 | 1.47          | 1.59 | 1.49                   | 1.66 |
| HLZ n = 3                           | 1.81          | 1.98 | 1.75          | 1.89 | 1.77                   | 1.97 |
| HLZ n = 4                           | 1.53          | 1.67 | 1.47          | 1.59 | 1.49                   | 1.66 |
| HLZ n = 5                           | 1.38          | 1.51 | 1.33          | 1.43 | 1.35                   | 1.50 |
| HLZ n = 6                           | 1.28          | 1.40 | 1.24          | 1.34 | 1.25                   | 1.39 |
| HLZ n = 7                           | 1.21          | 1.33 | 1.17          | 1.26 | 1.19                   | 1.32 |

For all models considered we set the most stringent direct limits to date



# Summary and outlook



- Presented most precise double differential dijet mass spectrum
- And normalized  $\chi$  distributions in 10 mass bins using 0.7 fb<sup>-1</sup> of data collected by the D0 detector.
- Results ares in good agreement with QCD.
- Most stringent direct limits on quark compositeness and extra spatial dimension models are presented