

1

Search for Lepton Flavor Violating τ Decays in Belle experiments

Nagoya university Y.Miyazaki (on behalf of Belle Collaboration)

Introduction

Lepton flavor violation (LFV) in charged lepton sector

Many extensions of the SM predict LFV decays. Their branching fractions are enhanced as high as current experimental sensitivity

⇒Observation of LFV is a clear signature of New Physics (NP)

Tau lepton : the heaviest charged lepton

- Strong coupling with NP
- Opens many possible LFV decay modes which depend on NP models
 ⇒Ideal place to search for NP

KEKB and Belle

KEKB: e⁺(3.5 GeV) e⁻(8GeV)

σ(ττ)~0.9nb,σ(bb)~1.1nb

A B-factory is also a τ -factory!

Peak Luminosity 2.1×10^{34} cm⁻² s⁻¹

 \Rightarrow World record!!!

Integrated luminosity: 945 fb⁻¹

 \Rightarrow 8.7x10⁸ τ -pairs

Belle Detector: Good track reconstruction and particle identifications

> Lepton efficiency:90% Fake rate : O(0.1) % for e O(1)% for µ

New Results in this summer

• IKs mode

Update analysis from 261fb⁻¹ \rightarrow <u>671fb⁻¹</u> (x2.4 times) Our previous UL is Br($\tau \rightarrow$ IK⁰s) < (4.9-5.6)x10⁻⁸ (PLB639, 159, 2006) New BaBar results @469fb⁻¹ (PRD97,012004,2009) \rightarrow Br($\tau \rightarrow$ IK⁰s) < (3.3–4.0)x10⁻⁸

IKsKs mode

No study of this mode yet at Belle and BaBar Current UL Br(τ→lKsKs)< (2.2-3.4)x10⁻⁶@13.9fb⁻¹by CLEO Search using <u>671 fb⁻¹</u> (x48 times CLEO)

3leptons

Update analysis from 543fb⁻¹ $\rightarrow 872b^{-1}$

Our previous UL is Br($\tau \rightarrow$ 3 leptons) < (2.0-4.1)x10⁻⁸(PLB660, 154, 2008) BaBar updates the results from to 367fb⁻¹ to 477fb⁻¹

- Br($\tau \rightarrow$ 3leptons) < (1.8–3.3) x 10⁻⁸ (Preliminary)

Event Selection

5-1 (3-1) prong events for IKsKs (IKs and 3leptons)

Select events with low multiplicity and separate two sides using thrust - Signal (charged tracks from LFV) - Tag (generic 1-prong decay)

Reduce background events using PID, kinematical information optimize the event selection for each mode separately

Analysis method

Optimization

To find the LFV signature

we optimize the selection criteria to obtain a good sensitivity for the signal discovery, not for a lower UL.

Number of observed event, N⁹⁹_{obs} To state 99% C.L. evidence which we need for 99% CL evidence, as a function of Expected of BG, N_{BG} - Need 2 events for N_{BG} ~0.1 Nobs. - Need 4 events for N_{BG} ~0.5 \rightarrow Diff. of effective efficiency is 2. 0.5 Unless the efficiency drops significantly, 0.1 we set the criteria to reduce N_{BG} as much as possible. 0.5 1 5

IKs and IKsKs

Apply optimized event selections
Dominant BG in signal region
⇒ Fake lepton + real Ks from
ee→qq(=u,d,s and c) for both modes

We observe no events in signal region ⇒Set upper limits at 90% C.L.

Mode	ε (%)	$N_{\rm BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	s_{90}	$\mathcal{B}(\times 10^{-8})$
$\tau^- ightarrow e^- K_{ m S}^0$	10.2	$0.18{\pm}0.18$	6.6	0	2.25	2.6
$\tau^- \rightarrow \mu^- K_{\rm S}^0$	10.7	$0.35{\pm}0.21$	6.8	0	2.10	2.3
$\tau^- \rightarrow e^- K^0_{\rm S} K^0_{\rm S}$	5.82	$0.07{\pm}0.07$	11.2	0	2.44	7.1
$\tau^- \to \mu^- K^0_{\rm S} K^0_{\rm S}$	5.08	$0.12{\pm}0.08$	11.3	0	2.40	8.0

(dominant sys, 4.5% per Ks , 1.0% per track)

• B(τ→IK⁰s) < (2.3-2.6) x 10⁻⁸

⇒ Obtain lower ULs than BaBar's ones $(3.3-4.4)\times 10^{-8}$ •B(τ →IK⁰sK⁰s) < $(7.1-8.0)\times 10^{-8}$

 \Rightarrow improve in a factor of (31-43) from CLEO's results q

$\tau \rightarrow 3$ leptons

Apply almost same event selection as previous analysis

We observe no events in signal region for all modes

Mode	ε (%)	N _{BG} ^{EXP}	σ _{syst} (%)	UL (x10 ⁻⁸)
e ⁻ e ⁺ e ⁻	6.0	0.21+-0.15	9.8	2.7
$\mu^-\mu^+\mu^-$	7.6	0.13+-0.06	7.4	2.1
$e^-\mu^+\mu^-$	6.1	0.10+-0.04	9.5	2.7
$\mu^-e^+e^-$	9.3	0.04+-0.04	7.8	1.8
$\mu^- e^+ \mu^-$	10.1	0.02+-0.02	7.6	1.7
$e^-\mu^+e^-$	11.5	0.01+-0.01	7.7	1.5
			Pr	eliminary

We obtain upper limit as $Br(\tau \rightarrow 3 \text{ leptons}) < (1.5-2.7) \times 10^{-8}$

- Improved the sensitivities along with the increasing luminosity
- Obtained lower ULs than BaBar's ones(< (1.8-3.3)x10⁻⁸)

Discussion

- In Feldman-Cousins approach, we can obtain lower UL if we obtain less number of observation than expected background.
- As another strategy, we set loose criteria, in which N_{BG}~0.5.
 ⇒We demonstrate using 3leptons modes with loose cuts

Mode	ε (%)	N _{BG} ^{EXP}	N _{obs}	UL (x10 ⁻⁸)	BaBar's
e ⁻ e ⁺ e ⁻	6.0 → 7.9	0.21+-0.15 → 0.48+-0.21	0→0	<mark>2.7</mark> →1.8	2.9
$\mu^-\mu^+\mu^-$	7.6 → 8.9	0.13+-0.06 → 0.42+-0.17	0→0	<mark>2.1</mark> →1.6	3.3
$e^-\mu^+\mu^-$	6.1 → 6.8	0.10+-0.04 → 0.52+-0.21	0→0	<mark>2.7</mark> →2.0	3.2
$\mu^-e^+e^-$	9.3 → 12.1	0.04+-0.04 → 0.41+-0.20	0→0	<mark>1.8</mark> →1.2	2.2
$\mu^- e^+ \mu^-$	10.1 → 11.8	0.02+-0.02 → 0.09+-0.09	0→1	<mark>1.7</mark> →2.5	2.6
$e^-\mu^+e^-$	11.5 → 13.1	0.01+-0.01 → 0.01+-0.01	0→0	<mark>1.5</mark> →1.3	1.8

We can obtain lower ULs than original ULs if we apply loose cuts. with original cuts Br($\tau \rightarrow$ 3leptons) < (1.5–2.7) x 10⁻⁸ $(1.3-2.5) \times 10^{-8}$ 10

Summary

We have updated searches for lepton flavor violating τ decays using >600 fb⁻¹ of data obtained by Belle No LFV signals are observed yet and we set limits of

the branching fraction at 90%CL around O(10⁻⁸)

- Br(τ →IK⁰s) < (2.3-2.6)x10⁻⁸
- Br(τ →IK⁰sK⁰s) < (7.1-8.0)x10⁻⁸
- Br($\tau \rightarrow$ 3leptons) < (1.5-2.7)x10⁻⁸

Succeed to reject BG ~O(0.1) effectively but keeping higher efficiencies

We provide the highest sensitivities to New Physics via lepton flavor violating τ decays

