

Searches for non-SM Higgs at the Tevatron

presented by

Per Jonsson Imperial College London For the CDF and D0 collaborations

The 2009 Europhysics Conference on High Energy Physics, Krakow, Poland, July 16-22, 2009

- Introduction
- MSSM Higgs:
 - Neutral Higgs bosons
 - Charged Higgs bosons
- NMSSM Higgs
- NLLP→bb
- Outlook

Per Jonsson Imperial College London

Tevatron continues to perform well

~ 6.9 fb⁻¹ delivered luminosity

Peak initial lumi 3.5x10³² cm⁻²s⁻¹

Expect 10 fb⁻¹ at end of RunII EPS-HEP 2009

MSSM Higgs sector

- Two Higgs doublets
 - 5 physical Higgs bosons
 - 3 neutral (h,A,H= ϕ)
 - 2 charged (H[±])
- Higgs sector described at tree level by two parameters:
 - m_{A} mass of A
 - $tan\beta$ ratio of vacuum expectation values
 - Other parameters enter via radiative corrections
- Coupling of neutral Higgs to b-quarks enhanced by $tan\beta$:
 - Production enhanced by $tan^2\beta$

Per Jonsson Imperial College London

125

130

140 m₄ (GeV)

Neutral MSSM Higgs Searches

EPS-HEP 2009

Search for Higgs decays:

h→ττ

relatively clean signature low BR ~10%

 $(b)bh \rightarrow (b)bbb$

large multi-jet backgrounds high BR ~90%

(b)bh \rightarrow (b)b $\tau\tau$

additional sensitivity at low m_a

reduced $Z \rightarrow \tau \tau$ background

Good b and tau identification vital

Per Jonsson Imperial College London

Similar overall sensitivities \rightarrow combine

Neutral Higgs: $h \rightarrow \tau \tau$

- Isolated electron or muon + hadronic tau or electron + muon
 - Main backgrounds: $Z \rightarrow \tau\tau$, multijets, W+jets, $Z \rightarrow ee/\mu\mu$, di-bosons
 - Mvis used to derive cross section limits

Per Jonsson Imperial College London

Neutral Higgs: bh→bττ

- Search in $\mu \tau_{had}$ channel (1.2fb⁻¹)
 - isolated muons + opposite
 sign hadronic tau
 - at least one b-tagged jet
- Events selected using combination of NN(tt) and likelihood (multi-jet)
 - discriminant output used in setting limits

Neutral Higgs: bh->bbb

- At least 3 b-tagged jets
- Peak in dijet mass spectrum
- Background
 - Multi-jet, predicted from data/MC
- CDF: 2 fb⁻¹, D0: 2.6 fb⁻¹
 - Train and cut on kinematic likelihood (D0)
 - Separate 3, 4 and 5-jet channels (D0)
 - Use dijet invariant mass to set limits in $tan\beta$ -m_A plane
- Final limits corrected for:
 - Width: Not negligible at high tanß
 - MSSM NLO Corrections: Strongest limits for Higgs mass term, $\mu < 0$

Per Jonsson Imperial College London

Combinations

- New result from DØ combining three signatures in neutral Higgs searches
- 19 sub-channels using between 1.0 and 2.6 fb⁻¹
- Strongest limit on neutral MSSM Higgs in $tan\beta m_A$ plane to date at a hadron collider
- Combinations across experiments in progress

Search for H^{\pm} in top decays

CDF: 2.2fb^{-1,} DØ: 0.9fb⁻¹

- Lepton + jet channel
- Di-jet mass used to set limit

Next-to-MSSM Higgs - richer model

- Two additional pseudo-scalar Higgs bosons (s and a)
- Decay $h \rightarrow aa$ dominates

If $m_a < 2m_\tau$

- Dominant decay: $h \rightarrow aa \rightarrow \mu\mu\mu\mu$
 - Two pairs of collinear muons
- Limit from direct search from LEP:
 - m_h > 82 GeV
- Backgrounds: QCD, $Z/\gamma^* \rightarrow \mu\mu$

Event Selection:

nMSSM

- Two muons ΔR(μ,μ) > 1
- 'Companion' tracks ∆R(μ,track) < 1

Set 95% limits in 2D mass window

• $\sigma \times BR \sim < 5 - 10 \text{ fb}^{-1} \text{ for } m_a = 0.2-3 \text{GeV}$

Per Jonsson Imperial College London

 $m_a > 2m_\tau: h \rightarrow aa \rightarrow \mu\mu\tau\tau$

- μ decay suppressed
- τ decay dominates
- Back-to-back μ and τ pairs
- Backgrounds: QCD, Z/γ^* +jets $\rightarrow \mu\mu$ +jets
- Event Selection
 - μ pair $\Delta R(\mu,\mu)$ < 0.5, $m_{\mu\mu}$ < 20 GeV
 - Missing $E_T > 25 \text{ GeV}$

Set Limits @95% C.L. using dimuon mass

Search for NLLP→ bb

Imperial College London

- search for pairs of displaced secondary vertices, located 1.6-20 cm from the beam axis
- no significant excess found
 - interpret as a limit on SM Higgs, decaying to a pair of Hidden Valley particles (neutral and long-lived), each decaying to a b quark pair

- CDF and DØ both performing well
- Wide range of BSM Higgs searches with up to 4fb⁻¹
 - No BSM Higgs signal yet, but established and sensitive analyses:
 - Potential is there
 - More data available, will include rapidly
- Combinations across experiments underway
- New results with more data and improved analysis techniques coming soon!

CDF and D0 experiments

- Both detectors extensively upgraded for Run IIa
 - New silicon vertex detector
 - New tracking system
 - Upgraded µ chambers

• CDF: New plug calorimeter & ToF

• DØ

- New solenoid & preshowers
- Run IIb: New inner layer in SMT & L1 trigger

Tau identification

DØ: 3 NN's for each τ type
 > Validated via Z's

• CDF: Isolation based

- 1 or 3 tracks in variable size and isolation cone
- Validated via W/Z measurements
 - Efficiency ~ 40-50%
 - > Jet fake rate < 1%

B-jet identification

D0 b-tagging

B-tagging-(D0) certification

Neutral MSSM Higgs $\rightarrow \tau \tau$

Per Jonsson Imperial College London

Neutral MSSM Higgs → bbb

EPS-HEP 2009

- Background Prediction
 - Large multijet background
 - Theoretical cross sections very large errors

- DØ: Sample Composition
 - Fit MC to data over several btagging points
- DØ: Background Shape
 - Use double b-tagged data to predict triple b-tagged background

Imperial College London

21

Fermiophobic Higgs $\rightarrow \gamma \gamma$

- 95% CL limits on branching ratio
 - Extend sensitivity into m_{hf} > 130 GeV
 - Not accessible by LEP

MSSM benchmarks

Five additional parameters due to radiative correction

- M_{SUSY} (parameterizes squark, gaugino masses)
- X_t (related to the trilinear coupling $A_t \rightarrow$ stop mixing)
- M₂ (gaugino mass term)
- μ (Higgs mass parameter)
- M_{gluino} (comes in via loops)

	m _n -max	no-mixing
M _{SUSY}	1 TeV	2 TeV
×,	2 TeV	0
M2	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
mg	800 GeV	1600 GeV

Two common benchmarks Max-mixing - Higgs boson mass m_h close to max possible value for a given tan β No-mixing - vanishing mixing in stop sector \rightarrow small mass for h

MSSM evolution

Per Jonsson Imperial College London

SM Higgs Sensitivity Projections

Can project sensitivity as a function of analyzed luminosity

- ~5.5 fb⁻¹ analyzed in 2009
- ~10 fb⁻¹ analyzed in 2011

Benchmark scenarto:

Assumes analysis design will remain similar to today's designs

Assumes we achieve potential for known sources of improvement

We expect to improve a broad range of analysis aspects including: dijet mass resolution, detector acceptance, add missing channels

Per Jonsson Imperial College London