

Beyond the SM searches

with top quark pairs produced in p-p collisions

on behalf of ATLAS and CMS collaborations

P. Ferreira da Silva (LIP/CMS)

at the LHC

Standard Model Electroweak Physics Session @ EPS HEP 2009

Proton-proton collisions Experimental challenges

- LHC suited to explore physics at the TeV scale barn
- Experimental challenges:
 - High cross section and luminosity
 - \Rightarrow high trigger efficiency
 - \Rightarrow need radiation hard detectors
 - Short time between collisions (~25 ns)
 - \Rightarrow fast readout
 - \Rightarrow high granularity to reduce occupancy
 - \Rightarrow synchronization
- Physics challenges:
 - Probe short-distance parton structure of hadrons
 - Hadronic jets, heavy quark production dominates
 - New physics underlies beneath, to be found

Pedro Silva

Proton-proton collisions The collider and the detectors

- $\sigma_{SMt \bar{t}} \sim 414 \text{ pb} (\sim 90\% \text{ gg fusion})$

- $\mathcal{L}=1pb^{-1}$ @ 14 TeV ~ $\mathcal{L}=2.5 pb^{-1}$ @ 10 TeV (for SM *t* \overline{t} production)
- Detailed description of detectors by:
- F. Gianotti, L. Masetti, G. Tartarelli (ATLAS)
- J. Virdee, C. Civinini, T.Orimoto (CMS)

New Physics in t t events

- New mechanisms might generate $t \ \overline{t}$ pairs
 - High-mass resonances (doi:10.1016/0370-2693(94)01660-5, hep-ph: 0612015)
 - 4th generation: b'b' $\rightarrow t \ \overline{t} \ W^+W^-$ (CMS: PAS-EXO-08-009)
 - Top's role in Electro-Weak Sym. Breaking mechanism
 - Condensate of top quarks ~ Higgs mechanism (hep-ph: 9702381)

Rare top decays

- Is V_{tb}=1 ? (hep-ph: 0607115)
- Flavor Changing Neutral Currents (γq, qZ, qg final states) (hep-ph: 08022075)

Top quark polarization

do anomalous couplings occur in Wtb vertex? (hep-ph: 0605190)

New Physics in $t \bar{t}$ events

...roadmap for two specific searches

- New mechanisms might generate $t \ \overline{t}$ pairs
 - High-mass resonances
 - \Rightarrow boosted *t* \overline{t} system
 - Collimated decay products can be clustered as single jet
 - \Rightarrow (boosted) top-jet tagging

Rare top decays

- simple *b* jet counting can probe $B(t \rightarrow Wb)$
- *b* jets often contain secondary vertices and soft leptons
 - \Rightarrow *b*-jet tagging

On the road to discovery **Resonances in** *t* **t spectrum**

- The μ +jets channel can be used to probe "safely" heavy resonances in t \overline{t} events
 - Large statistics: ~414 x 29/81 x ½ = 74 pb @ 10 TeV
 - Single μ trigger is <u>robust over a large</u> $M_{t\bar{t}}$ <u>range</u> (no isolation)

Mass reconstruction

- Re-scale fit results to signal region
 - QCD:
 23% (stat)
 ⊕
 25% (syst)
 −
 W+jets:
 20% (stat)
 ⊕
 20% (syst)
 - systematics dominated by JES + top background

On the road to discovery Reach for Z'

- Upper limits on σ_z, from mass spectrum ►
 - count events in $M_{t \bar{t}}$ sliding window;
 - consider background (=SM) only hypothesis;

ATLAS

- Find minimum σ_z, for 5σ deviation
 ⇒ discovery potential
- Systematics < 14%

(rec. efficiency, resolution, bckg contribution)

<u>CMS</u>

- Integrate binned likelihood in signal up to 95% \Rightarrow upper limit for $\sigma_{z'}$
- **Systematics** accounted for by pseudo-experiments (JES, bckg contribution, ISR/FSR)

$\mathcal{L} = 100 \text{pb}^{-1}$					
(p-p @ 10 TeV)	Expected	Expected Limit [pb]			
Z' mass [TeV]	no systematics	with systematics	$\sigma_{Z'}^{TopColor}$ [pb]		
0.75	$11.48 \substack{+7.31 \\ -4.27}$	$16.06 \substack{+5.58 \\ -2.50}$	13.17		
1.00	$6.94 {}^{+4.26}_{-2.80}$	$8.89 {}^{+4.02}_{-2.23}$	3.28		
1.25	$6.76 \ ^{+3.81}_{-2.75}$	$8.18 \ _{-2.11}^{+3.41}$	1.53		
1.50	$6.04 \stackrel{+4.26}{_{-2.41}}$	$7.09 {}^{+4.52}_{-1.98}$	0.56		
2.00	$7.40\ ^{+3.78}_{-3.39}$	$8.26 \ _{-3.18}^{+4.70}$	0.13		

CMS: PAS-TOP-09-009

On the road to discovery On the way to high masses

Corrections for mass reconstruction

- **Out-of-cone** (0.7<R<1.2)
 - Look-elsewhere in the events ($\Delta R=0.4$)
- **Event topology** (distance in phase-space)

Reach for High-Mass Z'

- A likelihood ratio* method can be used
 - N_{events}(signal) ~ 9 %
 - N(QCD + SM $t \overline{t}$) ~ 20 events

- Background contamination can be extracted from M₁ - sidebands (see slide 9)
 - Low H_{τ}^{lep} region (<200 GeV/c²)

EPS HEP 2009 (16 July)

 $0.1 < \Delta R(\mu, jet) < 0.4 \land p_T^{rel}(\mu, jet) < 35 GeV/c^2$

On the road to discovery Boosted top jet tagging

- Boosted tops produce broader jets ($\Delta R > 0.5$)
 - \mathbf{M}_{jet} → \mathbf{M}_{top} (in contrast with $\mathbf{M}_{jet} \propto \mathbf{p}_{T}^{jet}$ in QCD). ►
 - contains all top decay products (b + W-decay);
 - decomposable in 3 (or 4) sub-jets: A,B,C (D);

- $\min \{M_{A,B}; M_{A,C}; M_{B,C}\} \sim M_w$ (*b* sub-jet leads in p_T)

...more details check S. Rappoccio (CMS)

Pedro Silva

On the road to discovery **Di-(top) jet resonances**

- Construct **di-jet mass** from pre-tagged sample ($p_T > 250 \text{GeV/c}$; $|\eta| < 2.5$)
- Signal estimated after double tag: $S(m_0) = L \times \sigma(M) \times B(t \,\overline{t} \to jets) \times \int_{M-2\sigma}^{M+2\sigma} dm \frac{N_{2-tags}(m)}{N_{total}(m)}$
- Background can be estimated from data:
 - mistag parameterization predicts

background (= double mistags)

	Relative	Uncertainty			
Quantity	Uncertainty	on S and B			
	-	at $m_0 = 2 \text{ TeV/c}^2$			
Signal Uncertainties					
Top Tagging Efficiency	6.5%	13%			
JES Uncertainty on Acceptance	5%	5%			
Total Signa	(14%)				
Background Uncertainties					
Statistical uncertainty	10%	10%			
JES Uncertainty on QCD Background	35%	33%			
tt Continuum Contribution	100%	5%			
Luminosity	10%	10%			
Total Background Uncertainty 36%					

On the road to discovery **Top decays**

• *t t* decays produce 2 *b* jets in the final state

- Dilepton t \overline{t} channel may provide clean answer with early data (L=250 pb⁻¹)
 - **Orthogonal** to beyond SM searches in other $t \ \overline{t}$ channels
 - e- μ final state provides a clean signature, almost background free (S/B ~ 10)

b - tagging efficiency in t t

- Analyze *b*-tag multiplicity of dilepton events:
 - Use simple algorithms based on impact parameters
 - Count the number of b-tags per event
 - Compare with expections based on
 - $\boldsymbol{\epsilon}_{\mathbf{b}}(\boldsymbol{\epsilon}_{q})$ b-tag (mistag) rates
 - $\mathbf{R} = B(t \rightarrow Wb) / B(t \rightarrow Wq)$
 - jet misassignment fraction;
- *b*-tagging efficiency is computed (assume R=1, SM inspired)

 - higher statistics yield $\varepsilon_{b} = \varepsilon_{b}(p_{T})$, see slide 3 (ATLAS results)
 - Why not use b-tagging as handle against QCD background with first data?

€_h

ISR/FSR control

- Correct lepton-jet assignments have M_i<156 GeV/c² ►
- Tail in mass spectrum controls ISR/FSR from data
 - Combinatorial assignments modeled by:
 - **Swap**: pair leptons and jets from different events;
 - Random rotation of the leptons;
 - Normalization: scale shape at high masses.
 - Method determines the fraction of jets from $t \ \overline{t}$
 - correctly reconstructed and selected;
 - dominated by
 statistical
 uncertainty

Method	$N_{mis}^{M>190}$ / N_{mis}	a			
tt events from MADGRAPH					
average	0.21 ± 0.01	0.82 ± 0.04			
MC truth	0.20 ± 0.01	0.80 ± 0.01			
	CMS: PAS-	-TOP-09-001			

Pedro Silva

Measurement of R=B(t→Wb)/B(t→Wq)

- Total uncertainty ~ 9% (stat+syst)
- dominated by uncertainty in ϵ_{b} (if L=10pb⁻¹ is used for $\sigma_{cb} \Rightarrow \sigma_{R} \sim 14\%$)
- the variation of ISR/FSR is controlled ($\sigma_R < 1\%$)
- Systematic uncertainty can be reduced with 10x more data $\Delta \varepsilon_{b} / \varepsilon_{b} = 10\% \rightarrow 5\%$

 Combined measurement with lepton+jets channel may also help reducing common uncertainties

Conclusions

- With the upcoming LHC collider $t \ \overline{t}$ will be re-discovered in distinct ways:
 - bridge with Tevatron discovery;
 - provide callibration for the ATLAS and CMS detectors (energy scales, b-tagging, etc.);
 - appear as **background** / **open window for new physics** searches
- Focused on the **searches for heavy resonances** in $t \ \overline{t}$ production:
 - Intermediate and High-Mass resonance searches (can aim for σxBR~8pb discovery with ~100 pb⁻¹);
 - Data-driven background estimation is crucial before detectors are understood+MC is tuned;
 - Jet tagging algorithms are powerful tools against background rejection
 - Top jet tagging identifies the unique signature of collimated top jet decays (stay tuned for next talk)
 - *b*-jet tagging identifies the unique signature of the b-jets from top decays
 - Efficiencies can be derived from data and be used with early data

Backup slides

• Look for the original analysis in:

ATLAS Physics Results

CMS Physics Results

CERN-OPEN-2008-020

ATL-PHYS-PUB-2009-081

ATL-PHYS-CONF-2008-008

- CMS-PAS-TOP-09-009
- CMS-PAS-EXO-09-002
- CMS-PAS-EXO-09-008
- CMS-PAS-JME-09-001
- CMS-PAS-BTV-07-001
- CMS-PAS-BTV-07-002
- CMS-PAS-BTV-07-003
- CMS-PAS-TOP-09-001
- CMS-PAS-TOP-09-007

Top Quark Production

• Top quark can be produced in pairs

- Decays promptly, coupling preferentially to the b-quark ►
- Decay channel of the W-boson identifies the t t system decay channel ►
 - each channel offers specific
 experimental challenges

b

Event yields for Z' search

Selection efficiencies for t \overline{t} and Z' events for L = 100pb⁻¹

m _{tt}	500 GeV	750 GeV	1000 GeV	1250 GeV	1500 GeV	2000 GeV
ϵ (SM $t\bar{t}$) (%)	15.3 ± 0.2	17.3 ± 0.5	16.9 ± 0.5	16.2 ± 0.6	15.5 ± 1.0	12.7 ± 2.7
$\epsilon(Z')$ (%)	13.6 ± 0.4	21.3 ± 0.6	23.9 ± 0.6	24.6 ± 0.6	25.4 ± 0.6	24.0 ± 0.6

CMS: PAS-TOP-09-009

- tt bqqbuv requirement Other tt W+jets Z+jets OCD Event yields after full event Events in 100/pb 35K 370K >12M 6255 4.1M selection for SM processes Muon trigger 6926 767K 102K 9.7M 4966 Muon selection 2891 1538 387K 61K 46K (L=100pb⁻¹) Veto second lepton 2816 1242 386K 33K 46K 4 jets with $E_T > 35 \text{ GeV}$ 932 160 352 62 188 910±2 147 ± 1 317 ± 14 58 ± 6 Fit convergence 183 ± 20 CMS: PAS-TOP-09-009
- ATLAS: CERN-OPEN-2008-020 ATLAS: CERN-OPEN-2008-020 Reconstruction Efficiency [%] Efficiency [%] ATLAS ATLAS efficiencies 2.5 4.5 compared: 1.5 Standard Model t \overline{t} 1.5Ē Z 0.5900 1000 1100 1200 1300 1500 1400 1500 700 800 1400 700 800 900 1000 1100 1200 1300 Mass [GeV] Mass [GeV] Pedro Silva EPS HEP 2009 (16 July)

- The likelihood is profiled in β_s (signal only) by minimizing w.r.t to the backgrounds
- The upper limit on $\sigma_{z'}$ obtained integrating L(β_s) to 95%
- Upper limit distribution obtained by pseudo-experiments
 - Dice the background contributions from the MC expectations
 - use β_s median as estimator for U.L. (34% interval=1 σ error band)
 - Systematics induce variations of β_s and are taken into account by pseudo-experiments
 - accepted background cross sections, ISR/FSR, QCD multijet background, JES, JER,

On the road to discovery Likelihood for high mass Z' searches

• The pdf's for signal and backgrounds are built out of 4 variables

On the road to discovery Boosted top jet tagging

- In CMS boosted top jets are tagged with:
 - Cambridge-Aachen algorithm with R=0.8;
 - sub-clusters must have > 5% p_T^{jet};
 - consistent with top: 100 < M_{iet} < 250 GeV/c²
 - di-subjet consistent with W must be found: min M_{A,B} > 50 GeV/c²

- Broader jet contains all top decay products
 - $\mathbf{M}_{iet} \rightarrow \mathbf{M}_{top}$ (in constrast with $\mathbf{M}_{iet} \propto \mathbf{p}_{T}^{jet}$ in QCD).
 - decomposable in 3 (or 4) sub-jets: A,B,C (D);
 - $\min \{M_{A,B}; M_{A,C}; M_{B,C}\} \sim M_w$ (b sub-jet leads in p_T)

...more details in Salvatore Rappoccio's talk

The Cambridge-Aachen algorithm

- Recombination type algorithm (arXiv:hep-ph/9707323)
- Pairs of Lorentz vectors are used as input
- Distances* computed as: $d_{ij} = min [k_T^n(i), k_T^n(j)] \frac{\Delta R(i,j)^2}{R^2}$
 - Standard (anti) k_T -algorithm uses N = 2 (-1);
 - Cambridge-Aachen uses N=0.
- Distance is gauged with respect to "beam distance": $d_i = k_T^n(i)$
- If $\mathbf{d}_{ii} < \mathbf{d}_{i}$ cluster the pairs and proceed iteration
- If $\mathbf{d}_{ii} > \mathbf{d}_i$ stop process \Rightarrow jet has been reconstructed
- CMS uses R=0.8 as distance parameter for the top jet algorithm

^{*}Distance in detector phase-space is defined as: $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

Boosted top jet tagger performance

- Fake rate is measurable from data
 - measured in anti-tag + probe sample

- Efficiency is estimated from MC
 - Systematic uncertainty ~ 6.5% (dominated by detector-based uncertainties)

On the road to discovery **b** tagging performance

- b-tagging efficiency can be measured directly from data
 - relative \mathbf{p}_{T} of μ in jets extracts \mathbf{N}_{b-jets} in sample
 - b-tagging the away jet extracts N_{b-iets}(tagged)
- Uncertainties dominated by:

- Beam spot, **tracker alignment**, p_T^{rel} template + statistics of (p_T, η) bins

On the road to discovery Event yields for the dilepton (eµ) channel

• Selection efficiencies for $t \ \overline{t}$ dilepton channel for L = 250pb⁻¹

Total	<i>tī</i> dileptons
$(426 \pm 1) \cdot 10^{6}$	6251 ± 25
$(204.7 \pm 0.5) \cdot 10^3$	2595 ± 16
2531 ± 32	1344 ± 12
1041 ± 12	914 ± 10
884 ± 10	789 ± 9
867 ± 10	787 ± 9
	$\begin{array}{r} \text{Total} \\ (426 \pm 1) \cdot 10^6 \\ (204.7 \pm 0.5) \cdot 10^3 \\ 2531 \pm 32 \\ 1041 \pm 12 \\ 884 \pm 10 \\ 867 \pm 10 \end{array}$

CMS: PAS-TOP-09-001

• Event yields for background **SM processes** (L=250pb⁻¹)

Selection	Single top	other t ī	Di-boson	W/Z+jets	VQQ	QCD
Triggered	27563 ± 422	42303 ± 77	3400 ± 13	$(4338 \pm 2) \cdot 10^3$	38046 ± 64	$(422 \pm 1) \cdot 10^{6}$
\geq 2 leptons (>20 GeV/c)	225 ± 10	66 ± 3	620 ± 5	$(193 \pm 0.4) \cdot 10^3$	8170 ± 26	401 ± 183
1 e and 1 μ	122 ± 8	34 ± 2	207 ± 2	749 ± 24	49 ± 2	26 ± 15
\geq 2 jets (>30 GeV)	38 ± 4	27 ± 2	14 ± 1	45 ± 6	2.0 ± 0.4	-
$\not\!$	29 ± 1	23 ± 2	11.6 ± 0.5	30 ± 5	0.7 ± 0.2	-
Opp. sign leptons	29 ± 1	14 ± 1	10.5 ± 0.5	26 ± 5	0.7 ± 0.2	-

CMS: PAS-TOP-09-001