

Extracting backgrounds to SUSY searches from LHC data

Vadym Zhuravlov

(Max-Planck-Institut für Physik)

on behalf of the ATLAS and CMS collaborations

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

<u>Outline</u>

• Multi-jet + lepton veto

no lepton mode

- Ζ→νν
 - from $Z \rightarrow ee$ and $Z \rightarrow \mu \mu$
 - from W→µν
 - from γ+jets
- $tt \rightarrow bb qq lv$ with not-identified lepton
 - replacement of lepton
- Multi-jet + one lepton

1 lepton mode

top-anti-top and W+ jets

Introduction: SUSY searches

- First LHC data: search for events with multi-jets and large E_T^{miss}
- Example: *R*-parity conserving mSUGRA
 - cascade decays, 0,1,2, ... leptons
 - pair of LSP: no mass peak
- Counting of number of events in "signal region" and compare to SM prediction
- Monte Carlo SM prediction has large uncertainty:
 - p.d.f. for protons @ 14 TeV
 - cross-sections
 - detector response

<u>Z $\rightarrow \nu\nu$ </u> from <u>Z $\rightarrow ll</u>$ </u>

- Low statistics at high $E_T^{miss} N(\mu\mu)/N(\nu\nu) \sim 1/12$
 - Use MC shape
 - Lower jet multiplicity
 - $Z \rightarrow e + X$

<u>for 1 fb⁻¹:</u> stat. uncert. ~ 13% syst. uncert. ~ 8%

CMS PAS SUS-08-002

<u>Z $\rightarrow \nu\nu$ </u> from <u>W $\rightarrow \mu\nu$ </u>

- Control sample selection: no-lepton search + 1 muon $N(\mu\nu)/N(\nu\nu) \sim 1.5$
 - backgrounds:
 - top-anti-top: data-driven technique (ratio of btagged and untagged events)
 for 100 pb⁻¹
 - QCD: anti-isolated muons

 for 100 pb⁻¹:

 stat. uncert. ~ 29%

 syst. uncert. ~ 23%

 theory
 ~ 8%

no lepton mode

V.Zhuravlov EPS09 Krakow

CMS PAS SUS-08-002

$Z \rightarrow \nu \nu$ from γ +jets

- Photon selection:
 - $E_{T}(\gamma) > 100$ GeV, electron veto
 - isolation: tracker isolation+relative calorimetric isolation:
 - factor 100 in rejection of QCD
 - 90% efficiency to prompt photons
 - data-driven estimation of efficiency
- Backgrounds (<3% each):
 - QCD secondary photons
 - electron faking photon
 - data-driven estimation (backup slide)
- $N(\gamma + jets)/N(\nu\nu) \sim 4$

V.Zhuravlov EPS09 Krakow

no lepton mode

no lepton mode

$\underline{Z \rightarrow \nu \nu}$ from γ +jets (III)

- $Z \rightarrow vv$ branching
- selection
 efficiency

۲

 theory correction is applied

<u>for 100 pb⁻¹:</u>

ATL-PHYS-PUB-2009-083

<u>tt background</u>

- Dominant contribution:
 - τνqq
 - evqq and µvqq with non-identified lepton
- Select top-anti-top sample with identified lepton and replace lepton by τ or by non-identified lepton
 - τ: take into account neutrino, tau-jet and lepton
 - electron: replace by "electronic jet"
 - μ : consider probability of inclusion of momentum to $E_T^{\ miss}$

<u>for 200 pb⁻¹:</u> stat. uncert. ~ 8% syst. uncert. ~ 36%

8

1 lepton mode

$\underline{m_{T}}$ -method: reversing $\underline{m_{T}}$ cut

- $m_T < 100$ GeV: control sample
- $m_T > 100$ GeV: signal region
- take shape of background in the control sample
- normalize in $100 \text{ GeV} < E_T^{miss} < 200 \text{ GeV}$
- works if
 - m_T and E_T^{miss} are uncorrelated
 - no SUSY in control sample and in signal sample for $100 \text{ GeV} < E_T^{miss} < 200 \text{ GeV}$

ATL-PHYS-PUB-2009-077 Tiles me

Tiles method, 2x2

- System of equations is over-constrained
- Minimize extended log-likelihood estimator

$$-\ln\mathscr{L} = \sum_{i,j=1}^{n} \left(\overline{N}_{ij} - N_{ij} \ln \overline{N}_{ij} \right)$$

Conclusion

- $Z \rightarrow vv$ background to SUSY search in the no-lepton mode is estimable from 3 control samples:
 - $Z \rightarrow ee \text{ and } Z \rightarrow \mu \mu$
 - W→μν
 - γ+jets
- Estimation of top-anti-top by replacement technique ۲
- Several techniques of data-driven estimation of the combined ۲ background in the 1-lepton mode are developed
 - m_{π} -method
 - tiles method
- Plurality of (uncorrelated) techniques are necessary for ۲ understanding of SUSY background in early data

Backup slides

Definitions

- m_T "transverse mass", invariant mass, constructed from $E_T^{\ miss}$ and lepton p_T
- $m_{_{top}}$ (combined fit) invariant mass of 3 jets with largest vector-summed $p_{_T}$

•
$$M_{\text{eff}} \equiv \sum_{i=1}^{4} p_T^{\text{jet},i} + \sum_{i=1} p_T^{\text{lep},i} + E_T^{\text{miss}}$$

- *mSUGRA* points
 - SU3: $m_0 = 100 \text{ GeV}, m_{1/2} = 300 \text{ GeV}, A_0 = -300 \text{ GeV}, \tan\beta = 10, \mu > 0$
 - SU4: $m_0 = 200 \text{ GeV}, m_{1/2} = 160 \text{ GeV}, A_0 = -400 \text{ GeV}, \tan\beta = 10, \mu > 0$
 - LM1: m_0 =60 GeV, $m_{1/2}$ =250 GeV, A_0 =0 GeV, $tan\beta$ =10, μ >0

no lepton mode

$Z \rightarrow \nu \nu$ from γ +jets (II)

- QCD background:
 - separated from the prompt photons by $\Sigma p_T(track)/E_T(ECAL)$ (converted electrons)
 - control sample is constructed by reversing the calorimetric isolation cut
 - normalize before SUSY selection cuts
- Electron faking Photon
 - tag-and-probe method $Z \rightarrow ee$
 - 7 % in Barrel
 - 14 % in End Cap

$m_{_{\rm T}}$ -method (II)

- signal contamination in A, B, and C
 - background in D is over-estimated
- Correlation of variables
 - E_T^{miss} is part of m_T
 - fractions of background contributions depend on m_T
 - over-estimated background for low-mass SUSY and under-estimated for high-mass SUSY

Correcting for signal contamination

- **background**: m_T falls off steeply
- signal: m_T falls only slowly
- correct for signal contamination:
 - estimate background in m_T >100 GeV
 - estimate signal in $m_T > 100 \text{ GeV}$
 - translate to low- m_T region
 - subtract from background

Correcting for signal contamination

- May not work for low-mass SUSY
- Assumption on signal is needed to transfer the signal from signal region to control sample

Further development: combined fit

- Also take into account correlation between E_T^{miss} and m_T
- Build "empirical model" (p.d.f.) of each background component based on Monte Carlo and control samples
- "Generic shape" for signal contamination in the control sample
- Fit the sum of background "empirical models" and signal "generic shape" to the data in E_T^{miss} , m_T and m_{top} 3D space.
- Fit parameters:
 - normalization of each background
 - "empirical model" parameters

Tiles method: NxN optimization

- Few tiles:
 - 🙁 few degrees of freedom
 - 🙂 less sensitive to signal correlation
- many tiles:
 - 🙁 large statistical fluctuation
 - 🙂 goodness of fit
 - 🙂 sensitivity to signal shape
 - new parameters:
 - linear correlation factor
 - separate background contributions

<u>Tiles method vs Combined Fit</u>

	Combined fit	Tiles method
Variables	$E_{_T}^{_{miss}} m_{_T}^{} m_{_{Top}}^{}$	$E_{_T}^{_{miss}} m_{_{eff}}$
Background	Empirical model,	Total background
	constructed	shape is from MC
	separately	
	for each contribution	
Signal assumption	"generic shape"	No correlation
"Hidden" SUSY	shape close to	shape close to
	linear combination	total
	of background	background

<u>Replacement techniques</u>

- Basic idea: isolate events with "simple" topology and replace one reconstructed object by another
- top re-decay: select ttbar events with low E_t^{miss} , reconstruct both top's kinematics, remove their decay products and re-decay
- $Z \rightarrow vv$ from $Z \rightarrow ll$
- $tt \rightarrow bb \ lv \ \tau v \ from \ tt \rightarrow bb \ lv \ lv$
- $tt \rightarrow bb qq \tau v \text{ from } tt \rightarrow bb qq lv$

<u>Replacement technique: top re-decay</u>

- seed events selection:
 - 2 opposite sign leptons, 2 jets
 - $\log E_T^{miss}$
 - only one of two combinations jet-lepton

 $m(l, j) < \sqrt{m_{Top}^{2} - m_{W}^{2}}$

top kinematic reconstruction

$$m_W^2 = (p_{l1} + p_{\nu 1})^2$$

$$m_W^2 = (p_{l2} + p_{\nu 2})^2$$

$$m_t^2 = (p_{l1} + p_{\nu 1} + p_{b1})^2$$

$$m_t^2 = (p_{l2} + p_{\nu 2} + p_{b2})^2$$

$$E_x^{miss} = p_{(\nu 1)x} + p_{(\nu 2)x}$$

$$E_y^{miss} = p_{(\nu 1)y} + p_{(\nu 2)y}$$

<u>Replacement technique: top re-decay (2)</u>

- Top decay simulation:
 - PYTHIA 6.4 + Atlfast, leptonic decays
 - 1000 decays for each seed event:
 - increase statistics but introduce bin-to-bin correlations
- Remove original top decay products and merge resimulated top's
- Apply SUSY search cuts
- Normalize to data in low- E_T^{miss} region
- robust against SUSY contamination

Other methods

- QCD background in no-lepton mode: jet smearing
 - measure jet response function from jet+ γ and 3 jet events

•
$$HT_2 = \sum_{i=2}^{4} p_T^{\text{jet }i} + p_T^{\text{lepton}}$$
 versus E_T^{miss} significance

- a pair of (almost) uncorrelated variables with high separation power
- τ reconstruction

1

- $tt \rightarrow bb \ lv \ \tau v \ in \ 1$ -lepton mode and $tt \rightarrow bb \ \tau v \ qq \ in \ no$ -lepton mode
- Topbox: $tt \rightarrow bb lv qq$ in 1-lepton mode
 - selection of clean sample of tt→bb τν qq events reconstructing the invariant masses or top and W decay products
- QCD background in 1-lepton mode: lepton isolation
 - estimate E_t^{miss} shape from QCD events with non-isolated lepton and normalize to number of events with isolated lepton in low- E_t^{miss} region