# Extra Dimensions and Mini Black Holes at the LHC

#### Viatcheslav Valuev University of California, Los Angeles

**On behalf of the ATLAS and CMS collaborations** 

**Europhysics Conference on High Energy Physics, Krakow, 16-22 July 2009** 



# Introduction

- Many theories beyond the Standard Model invoke extra dimensions (EDs) to explain why gravity is so much weaker than the other forces.
- Two popular scenarios of extra dimensions:
  - ADD (N. Arkani-Hamed, S. Dimopoulos, G. Dvali): gravitational force is diluted by propagating through extra dimensions of macroscopic size.
  - RS (L. Randall and R. Sundrum): gravity originates on a hidden 4D brane and is suppressed away from the brane (along the ED) due to the warp factor.
- It is well known that these (and many other) models can be probed by the LHC experiments.
- Focus of this talk:
  - What are the prospects for the forthcoming 2009-10 LHC run?
  - What are the main experimental challenges?



## General Comment

The exact scenario for the 2009-10 LHC run is not known yet. The results in this talk (unless explicitly stated otherwise) are for the center-of-mass energy √s of 10 TeV, and assume that an integrated luminosity of 100-200 pb<sup>-1</sup> is accumulated.



#### Search for Dilepton Decays of New High-Mass Resonances

- Benchmark signals: Kaluza-Klein gravitons of RSI model (G\*) and various types of additional heavy neutral gauge bosons (Z').
- Dominant (and irreducible) background: Drell-Yan production  $pp \rightarrow \gamma^*/Z^0 \rightarrow l^+l^-$ .
- Other backgrounds:
  - Two real high-p<sub>T</sub> isolated leptons: ttbar, tW, WW
  - At least one jet misidentified as lepton: W+jets, dijets, photon+jets

# Much smaller than Drell-Yan and reducible



Estimated dielectron invariantmass spectrum for an integrated luminosity of 100  $pb^{-1}$  (includes 1 TeV  $Z_{SSM}$  signal)



#### Efficiency Measurements: Tag-and-Probe Method from Tevatron

*Example: evaluation of muon reconstruction efficiency in CMS (similar methods used for trigger, electron id and other efficiencies)* 

- Tag: good-quality, isolated muon
- Require  $M_{inv}$  of tag-probe pair to be close to  $M_Z$
- Examine efficiency of interest for the probe



- $60 < M_{\mu\mu} < 120 \text{ GeV}$ ;  $p_T$  reach is up to ~150 GeV
- Upper cut on  $M_{\mu\mu}$  removed:  $p_T$  reach extends to ~200 GeV (larger background)

tag

probe

# Misalignment and High-p<sub>T</sub> Muons

- Both tracker and muon misalignment affect dimuon mass resolution at high  $M_{\mu\mu}$ . At startup, the effect can be big.
- For expected values of misalignments, shape of Drell-Yan mass spectrum is largely unaffected. Trigger and offline reconstruction efficiencies remain unchanged as well.  $\sqrt{s=14 \text{ TeV}}$



# Real High-p<sub>T</sub> Muons at LHC

- Month-long "Cosmic Run at Four Tesla" in CMS (Oct-Nov 2008): wealth of data to study alignment, resolution, efficiency, reconstruction of high-p<sub>T</sub> muons, etc.
- One example: Select cosmic muons with a topology similar to that expected in pp collisions, and reconstruct their trajectories as two independent tracks, in top and bottom halves of the detector. Estimate resolution by comparing  $1/p_T$  of upper half with  $1/p_T$  of lower half.



#### Non-Drell-Yan Backgrounds: Data-Driven Methods

Every physics analysis at the LHC is devising methods to estimate various backgrounds from data – particularly important at LHC startup, before validity of MC is demonstrated.



- ttbar, tW, diboson backgrounds to e<sup>+</sup>e<sup>-</sup> and μ<sup>+</sup>μ<sup>-</sup>: from eµ events
  - Need to correct for differences in efficiencies and for contamination of non-genuine eµ events.
- ttbar background: from b-tagged events
- Leptons in jets: from rate of leptons in events with identified jets
- Leptons in jets: from events rejected by isolation cuts
  Control sample: same-sign dileptons



# Minimizing Systematic Uncertainties

- Peak-search algorithm explores difference in shape between possible signal from new resonances ("bumps") and continuum background.
- No constraints on the absolute background level: fit assumes only background shape is known.

*Examples: simulated* S+B *mass spectra and fits for two typical* MC *experiments,* for  $\int Ldt = 100 \text{ pb}^{-1}$  ( $\sqrt{s} = 14 \text{ TeV}$ ).



# Discovery Potential for RSI $G^{\ast}$ and $Z^{\prime}$



- If LHC operates at  $\sqrt{s} = 10$  TeV, an integrated luminosity of 100 pb<sup>-1</sup> should be sufficient to probe the RSI G\* mass region of up to 1.3-1.5 TeV in each leptonic decay channel (and in each experiment).
  - Work on combining results from ee and  $\mu\mu$  channels is in progress.
- Similar mass reach in  $G^* \rightarrow \gamma \gamma$  decay channel (next slide);  $G^*$  and Z' will also be searched for in dijet and  $\tau \tau$  channels.

10



### Search for RS Gravitons in yy

Use results of the search for large extra dimensions in  $\gamma\gamma$  channel (next two slides) to probe the sensitivity to  $G^* \rightarrow \gamma\gamma$ .



With an integrated luminosity of 100 pb<sup>-1</sup>:  $5\sigma$  significance for G\* (c=0.1) with the mass of up to 1.2 TeV; 95% CL upper limit for up to 1.4 TeV.



### Search for Large Extra Dimensions in $\gamma\gamma$

- Virtual graviton decays; small energy spacing between the adjacent Kaluza-Klein modes.
- Signature: non-resonant enhancement of the  $M_{\gamma\gamma}$ spectrum at high masses.
- Dominant (and irreducible) background: prompt diphotons; obtained by normalizing MCbased shape to data at low  $M_{\gamma\gamma}$ .
- Other backgrounds:
  - Jets faking photons in γ-jet and dijet events; measured in samples of identified jets.
  - Electrons reconstructed as photons in Drell-Yan events; measured from  $Z \rightarrow ee$ .
- Efficiency estimated by using the tag-and-probe method on  $Z \rightarrow ee$  to get  $\varepsilon_e$ , and scaling it by the MC ratio of  $\varepsilon_{\gamma}/\varepsilon_e$ .



### Search for Large Extra Dimensions in yy



EPS09, 16-22 July 2009

#### Search for Large Extra Dimensions in Monojets

- Complementary to the above search: production of real graviton recoiling against a quark or gluon.
- Signature: large missing E<sub>T</sub> back-to-back with high-p<sub>T</sub> jet.
- Dominant backgrounds: Z → vv + jets and W → lv + jets with the lepton lost; estimated by selecting W → µv + jets, and reweighting by the ratios of cross sections and efficiencies.
- Select events containing no isolated leptons, and only one or two high-p<sub>T</sub> jets.



and  $|\eta_{jet}| < 1.7$ .



#### Search for Large Extra Dimensions in Monojets



Sensitivity similar to that in the diphoton channel Real graviton emission will also be searched for in the  $\gamma$ +jet channel



#### Mini Black Holes at LHC

- If the impact parameter of two partons is smaller than the Schwarzchild radius  $R_S = 2Gm/c^2$ , a black hole is produced.
- In the presence of compact EDs,
  - At distances r < R<sub>ED</sub>, gravity is much stronger than in the 3D scenario
  - Therefore, R<sub>S</sub> is significantly increased
  - $\rightarrow$  Black holes can be produced easier
- If produced, light black holes should undergo Hawking evaporation: particle pairs produced by vacuum fluctuations may be split, one particle falling into the black hole, the other projected outward.
  - $\rightarrow$  Very distinct signature



Graphics from V. Lendermann

#### Search for Mini Black Holes

- Signature (also for string balls): large number of high-p<sub>T</sub> final-state particles and jets; large missing E<sub>T</sub>.
- Largest backgrounds: ttbar, dijets, W+jets.
- Select events containing at least one high- $p_T$  lepton and with large  $\sum |p_T|$  of all reconstructed objects; reconstruct  $M_{BH}$ .

Many assumptions involved, but if the predicted signature is correct, it should be detectable.



# Summary

- We presented some recent studies by ATLAS and CMS dedicated to searches for extra dimensions, new gauge bosons, and mini black holes in the forthcoming 2009-10 LHC run.
- Current focus of the analyses is on the data-driven methods of estimating backgrounds and efficiencies, and on the techniques to minimize systematic uncertainties.
- The scenario in which an integrated luminosity of ~100 pb<sup>-1</sup> is accumulated at  $\sqrt{s}=10$  TeV offers good chances to go beyond the existing limits.



# Further Reading

- ATLAS:
  - Expected Performance of the ATLAS Experiment, arXiv:0901.0512 (1828 pages).
  - ATL-PHYS-PUB-2009-011: Search for highly-excited string states with ATLAS.
- CMS:
  - SBM-07-002: Search for New High-Mass Resonances Decaying to Muon Pairs in the CMS Experiment.
  - EXO-09-004: Search for Large Extra Dimensions in the Diphoton Final State.
  - EXO-09-006: Search for High-Mass Resonances Decaying into an Electron Pair in CMS at 10 TeV with 100 pb<sup>-1</sup>.
  - EXO-09-009: Search for Randall-Sundrum Gravitons in the Diphoton Final State.
  - EXO-09-013: Search for Monojet from ADD Extra Dimensions at  $\sqrt{s}=10$  TeV.

Available at https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults



## Back-up Slides



#### Z' and G\*: Selection Criteria and Efficiencies

- Event is selected as a dimuon candidate if:
  - It passes logical OR of single-muon and dimuon non-isolated trigger paths.
  - It contains at least one pair of oppositely-charged muons reconstructed offline.

√s=14 TeV

- $-p_{\rm T}$  of each muon in a pair is larger than 20 GeV.
- Both muons are isolated in the tracker.



### Dimuon Mass Spectra w/ Isolation Cut

#### <u>Apply isolation cut (and $p_T > 20$ GeV cut):</u>



- Dijet contribution is very small.
- Largest non-Drell-Yan background is
  - > 400 GeV, t-tbar (about  $\frac{1}{4}$  of Drell-Yan).
  - > 1 TeV, W+jets.



 $\sqrt{s}=14 \text{ TeV}$ 

### Search for Resonances: Fitting Procedure

- Generate ensembles of MC experiments:
  - Number of events in each experiment fluctuates according to Poisson distribution with a mean of  $\sigma \cdot Br \cdot (\int Ldt) \cdot \epsilon$ .
  - Add Drell-Yan contribution from lower masses.
- In each experiment, fit  $M_{\mu\mu}$  values using an unbinned maximum likelihood:

$$p(M_{\mu\mu}) = \frac{N_s}{N_{tot}} \cdot p_s(M_{\mu\mu}; m_0, \Gamma) + \left(1 - \frac{N_s}{N_{tot}}\right) \cdot p_b(M_{\mu\mu})$$

- $p_s$  (signal pdf) is a convolution of a Breit-Wigner with a Gaussian smearing.
- $p_b$  (background pdf) is an exponential,  $exp(-k \cdot M_{\mu\mu}^{0.3})$ , with the slope parameter *k* determined from fits to Drell-Yan events.

Up to three free parameters: signal fraction  $(N_s/N_{tot})$ , signal mean  $(m_0)$ , and signal FWHM ( $\Gamma$ ).

No constraints on the absolute background level: fit assumes only background shape is known.



# Significance

• Use likelihood-ratio estimator  $S_L$  to calculate significance of an observed "signal":

$$S_L = \sqrt{2\ln(L_{S+B}/L_B)},$$
 where

 $-L_{S+B}$  is the maximum likelihood from the signal-plus-background fit (*p*), -L<sub>B</sub> is the maximum likelihood from the background-only fit (*p<sub>b</sub>*).

Dedicated MC study (described in CMS Note 2005/002) showed that  $S_L$  behaves as desired in the tail above several sigma in the small-statistics low-background regime.

• Usual convention: S > 5 is necessary to establish a discovery (probability of  $2.9 \cdot 10^{-7}$  that the pure background would mimic a signal).

