

DECam The Dark Energy Survey Camera

16/07/2009

The collaboration

Dark Energy Survey

Introduction

Dark Energy Survey

... is a project to "nail down" the dark energy equation of state.

... How? Building an **imaging** wide-field camera and conducting a multi-bandpass photometric survey of the southern sky.

62-CCD mosaic image simulation

Introduction

Dark Energy Survey

... is a project to "nail down" the dark energy equation of state.

... How? Building an **imaging** wide-field camera and conducting a multi-bandpass photometric survey of the southern sky.

... Where? At the NOAO CTIO Blanco 4m telescope, substituting the current instrument.

Introduction

Dark Energy Survey

... is a project to "nail down" the dark energy equation of state.

... How? Building an **imaging** wide-field camera and conducting a multi-bandpass photometric survey of the southern sky.

... Where? At the NOAO CTIO Blanco 4m telescope, substituting the current instrument.

... When? Starting in 2011, making a 5-year 5000 sq.deg. Survey.

EPS-HEP2009 DECam I.Sevilla

For more details on the science... ask me or wait for the Cosmology session on Saturday!

Instrument requirements

To achieve the required goal in terms of sensitivity, extension and volume in the allocated time-frame, the following requirements for the instrument are set:

- 3 square degree field of view.
- Detector QE in the 800-1000 nm must be > 65%.
- Max. 15 e- noise in the detector when read out in 17 s or less

The camera: DECam

Optical System

Ciemat

Optical system for image formation (incl. aberration correction, field adjustment)
5 fused silica lenses, largest 930 mm diameter
C5 is also detector vacuum vessel

Optical system for mage formation (incl. aberration correction, field adjustment)
5 fused silica lenses, largest 930 mm diameter

- •C5 is also detector vacuum vessel
- •Lenses mounted into invar cells and inside barrel
- •UCL leads the effort for lenses and cells; barrel to be done by Fermilab

16/07/2009

Filters & shutter

- Filter changer with 8 'cartridges'.
- 5 are used for DES: the Sloan Digital Sky Survey *griz* system and the Y band
- Filters are ~580 mm in diameter and ~15 mm thick and must be very uniform in light throughput.
- Shutter system is being developed by Bonn University. U. Michigan builds the filter changers.

Ciemat

Camera vessel

- Detectors must be cooled to temperatures O(173K) to minimize dark current.
- Temperature must be stable throughout the focal plane and in time to ensure uniform performance.
- A vacuum of O(1e-5 torr) is needed to avoid contaminant and water deposition on the CCD surface.
- These conditions must be kept autonomously during the night and for extended (months) periods.

Detector requirements

Many requirements to meet DES science objectives:

• Linearity (<1%), high dynamic range (1e4-1e5).

Ciemot

- Low dark current, low read noise (<15 e-/pixel).
- CTI < 1e-5
- QE ~0.7
- Charge diffusion & flatness.
- Cosmetic defects (<0.5%).

16/07/2009

CCD features

- 62 science CCDs are used in the focal plane (plus guide, focus and spares).
- These are provided by LBNL (Holland et al.) using **thick**, **fully-depleted** designs.
- This ensures increased IR QE and low fringing, and are specially **suitable for high-redshift observations** in the *z* band.
- Read noise being measured at ~17 second readout rate is less than 10 e-.
- Each CCD contains 2048x4096 15 micron pixels. This amounts to 0.27"/pixel.
- Characterization, packaging and assembly in the focal plane is being done at Fermilab.

CCD features

100

90 80

70

• 62 science CCDs are used in the focal plane (plus guide. focus and spares).

• These are provet al.) using this designs.

- This ensures in fringing, and are high-redshift ob
- Read noise be second readout
- Each CCD cor micron pixels.

• Characterization 1st DES astronomical CCD image! assembly in the rocar plane is being done at Fermilab.

Readout

ipingThe CCD testing and
characterization is currently using a
modified version of NOAO'sCCDs and
the FPSPMonsoon system.
Each CCD:

• 2 video readout channels

• Also 15 clock inputs and 7 bias voltages.

•Temperature sensor.

3 types of boards:

• MCB (control); CB (clock board); ACQ (12-channel acquisition). Boards designed and built by Spain and Fermilab.

Modifications had to be done to fit 3 10-slot backplane crates to handle all CCDs.

16/07/2009

Ciemat

CCD + packaging Entire focal plane is read out in 17 seconds (250kpix/s)

16/07/2009

Ciemat

Current developments

- CCD and optics fabrication well underway.
- Barrel and lenses finished by the end of the year.
- CCD testing taking place: 33% of science-grade CCDs have been selected.
- Electronics, crates about to begin production. To be finished by the end of the year.
- Construction of telescope simulator
- Data management challenges in fifth iteration now.
- First versions of SISPI ('mountain-top software') being tested on-site.

What the future holds Cierrot for DES...

End of 2009: most of the elements are finalizing fabrication.
1st half 2010: last CCDs are selected.
During 2010: All camera elements are sent to FNAL to be integrated and tested in the telescope simulator.
Early 2011: Camera at CTIO: installation.
Summer 2011: Commissioning.
Fall 2011: Ready to go!

Backup slides

DES Forecasts: Power of Multiple Techniques

Assumptions: Clusters: σ_8 =0.75, z_{max} =1.5, WL mass calibration

BAO: l_{max} =300 WL: l_{max} =1000 (no bispectrum)

Statistical+photo-z systematic errors only

Spatial curvature, galaxy bias marginalized, Planck CMB prior

Factor 4.6 improvement over Stage II⁻²

Filter Changer - Cierrot UMichigan

Capacity for 8 filters. Filter diameter: 620 mm. Filter thickness: 13mm Final Design is complete, final check of drawings in progress Fabrication will begin soon

Shutter: Bonn University is the only vendor for large shutters and other customers are pleased – Mike Schubnell is in contact with Bonn and will obtain an updated cost and schedule estimate when we are ready to buy it (CD3b approval ~ Jan. 09)

Supernovae la

Strategy: distance probe

• Obtain light curves + calibrate: shape in different bands relates to luminosity.

• Luminosity + magnitude + redshift:

$$\chi^{2} = \sum_{objects} \frac{(\mu - 5\log(d_{L}(z;\Omega_{M},\Omega_{DE},w))/10\,pc)^{2}}{\sigma^{2}}$$

DES:

- Measure ~2000 SN photometrically, up to ~1.
- Large sample and improved z-band response

• 10% of the survey time will be devoted to SN search revisiting an area of 40 sq.deg.

• Photometric errors will be addressed w/ on-site measurements of photometry, spectroscopic follow-ups.

Systematics: dust, evolution, calibration...

16/07/2009

Cluster density

Strategy: structure probe

- Obtain number count of galaxy clusters per unit volume.
- counts + cluster mass + redshift:

$$\frac{d^2N}{dzd\Omega} = \frac{c}{H(z)} D_A^2 (1+z)^2 \int_0^\infty f(M,z) \frac{dn}{dM}(z) dM$$

DES:

• Measure ~20000 clusters up to z~1.3

• Identification using partnership with South Polar Telescope (using Sunyaev-Zeldovich effect).

Systematics: observable-mass relation, photometric redshift, completeness and purity of cluster sample...

Weak lensing

Strategy: structure probe

• Statistical measurement of distortions of background objects created by foreground matter (shear). It means measuring shapes and redshifts.

• The evolution of the statistical pattern of the shear and cross-correlation of background-foreground shear are sensitive to expansion history.

DES:

- Shapes of ~3e8 galaxies.
- PSF < 0.9" FWHM

Systematics: photo-z's, PSF anisotropy, shear calibration

Ciemat

Galaxy angular clustering

Strategy: distance probe

- Measure angular two-point correlation function of galaxies (of a certain type) in redshift shells.
- Theory predicts shapes of the power spectrum (integral of the 2pcf)

• Also, identify the first peak of the prerecombination baryonic acoustic oscillations.

DES:

- Power spectrum of ~3e8 galaxies up to $z\sim1.5$.
- Probe larger volume and redshift range than current state-of-the-art (SDSS)

Systematics: photo-z's, galaxy-mass relationship (bias)

16/07/2009

Imager Vessel and Heat Exchanger

Simple Tube Heat Exchanger Copper braids attach to focal plate Copper braids contain temperature feed back and trim heaters

Cierrot Schematic LN2 Supply System at CTIO

Survey Image System - Process Integration* (Mountaintop Software)

Survey Planning

- Optimize for excellent photometric calibrations
- Simulation of mock raw DECam survey images, including galaxies and stars, and instrumental effects
 - Used to optimize photo-z calibrations
- Produce simulated data to support the annual Data Challenges in the Data Management Project: Each year the simulations grow in complexity and size.

DECam 3 deg² field o f view (= 1 hex = 1 tile)

Ciemot

• DES "tiles" 5000 deg² of sky at a rate of 2 times per year in each of 4 filters, constraints on DE possible after two years

DECam Telescope Simulator

Provides platform for testing all components of DECam in all orientations also tests installation

Filter changer/shutter

Imager into the cage at the service platform

F/8 handling

Cage onto the telescope spiders

Ciemat

- Each crate will contain two backplanes; one with 6 slots and one with 4 slots.
- A single 4-slot section would provide for readout the 4 guide CCDs
- The remaining backplane sections will provide readout of up to 72 science and alignment CCDs.
- Active cooling will hold electronics temperature stable to within +/-2°C. Crate is designed to radiate less than 20Watts.