Generic Search for Deviations from Standard Model Predictions in CMS

Shahram Rahatlou

APIFN7A

for the CMS Collaboration

Introduction

- Generic search strategies already explored at Tevatron and Hera
 - Provide comprehensive comparison between data and Monte Carlo Predictions
 - Complementary strategy to augment dedicated searches
 - Not optimized for specific theoretical models
 - Sensitive to unexpected signatures not covered by specific models
- More appropriate for later stage of data taking with well understood detector response
 - Requires a solid reference for comparison
 - Needs to assume Standard Model to be correct and look for deviation in large number of event topologies
- Useful physics monitoring tool with early data
 - Provide feedback on instrumental effects causing discrepancies
 - Compare different Monte Carlo simulations
 - Tuning of various MC generators with data

Model Unspecified Search in CMS (MUSiC)

- Strategy very similar to that used in H1
- Lepton triggers
 - Reduce overwhelming QCD background
- Standard reconstructed objects
 - Benefit from improved reconstruction and identification studies with first data
 - Reduce systematic uncertainty
- Three distributions sensitive to deviations
 - **Scalar sum of transverse momenta** Σp_T
 - Sensitive to products from new heavy particles
 - Invariant or transverse mass of event
 - Missing energy
 - Most sensitive to new physics but unreliable with very first data

Physics Objects with CMS Detector

Robust Background Estimate

- Key ingredient for robust and credible search of deviations
 - Any quantitative measure of deviation washed away by large uncertainties on expected background
- Monte Carlo expectations good enough for most of electroweak backgrounds
 - Main deviations in high p_T regions with very small SM expectation
 - Even 30% uncertainty reasonable for such regions
 - □ Large MC samples can reduce
- QCD background as main source of concern
 - Predictions with large uncertainties
 - More difficulties in producing large samples
- Data driven approach used to estimate QCD background
 - Systematic uncertainty to shrink with more statistics

Data Driven Estimate of QCD Background

- Control region defined by using looser isolation criteria to estimate background in data
- Two inclusive final states used to define single scale factor for all event categories
 - Dedicated region for each of ~400 states not feasible nor practical
 - $\hfill\square$ Normalization estimated from low $\hfill p_T$ regions dominated by Standard Model
 - Systematic uncertainty of 50%

Regions of Interest showing Discrepancies

- Consider any single bin or group of adjacent bins with deviations
- Compute Poisson probability p_{data} for N_{MC} \pm δN_{MC} to fluctuate up or down to N_{data}
 - Convolution with Gaussian to account for systematic uncertainties
- Region with largest discrepancy (smallest p_{data}) called Region of Interest
- Define a quantitative measure of such discrepancy with pseudoexperiments based on Standard Model predictions

Probability of discrepancy to occur in data

- Determine distribution of p_{data} for toy MC experiments based on SM expectation
- Large fraction \tilde{P} of toy experiments with $p < p_{data}$ indication of potential deviation

- Traditional interpretation in terms of standard deviations if considering P as tail of Gaussian distribution
- Use a 3σ threshold in automatic search for deviations

Physics Commissioning With Early Data

- Uncertainty of 5% assumed for Jet Energy Scale (JES) and included in probability calculation
- Ignoring this uncertainty and increasing JES by 10% in pseudo-experiments cause of 4.4σ discrepancy

- Such scenario can easily occur in early data taking physics monitoring
- Including systematic uncertainty reduces discrepancy to ~1.6 σ

Comparison of Generators with MUSiC

- ALPGEN and PYTHIA have different momentum spectrum and multiplicities spectra for harder jets
- Toy experiments of W+jets with ALPGEN compared to inclusive $W \rightarrow e v PYTHIA MC$

17 Jul 2009

Outlook

- A model-independent tool for automatic search of deviations from standard Model tested in CMS
- Function as physics monitor in early data
 - Contribute to identifying major detector effects affecting all physics objects
- Prove robustness as more data become available
 - Improved expectation to gain confidence in automatic search outcome
- In longer term with well understood detector and under-control systematic uncertainties attempt at search for new signals
 - Missing energy will be understood and corrected for instrumental effects
 - Deviations of missing energy crucial for search of unexpected signals
- With 1 fb⁻¹ of data hints of deviations due to mSUGRA (LM4) on top of Standard Model expectation in many final states
 - 36% of inclusive final states in Σp_T spectrum
 - 59% of inclusive final states in MET spectrum