Heavy vectors in Higgsless models

Jernej F. Kamenik INFN LNF & IJS

Laboratori Nazionali di Frascati

Institut "Jožef Stefan"

Introduction

- © Experiments provide unambiguous indications that the SM gauge group is spontaneously broken $[SU(2)_L \times U(1)_Y \rightarrow U(1)_Q]$
- One elementary SU(2)_L scalar doublet with φ⁴ potential is the most economical & simple choice
- $\bullet \quad L_{\text{Higgs}}(\varphi, A^i, \psi^i) = D_{\mu} \varphi^+ D_{\mu} \varphi + \mu^2 \varphi^+ \varphi \lambda (\varphi^+ \varphi)^2 + Y^{ij} \psi_L^i \psi_R^j$
 - not the only allowed possibility
- So far only the ground state of this Lagrangian has been tested with good accuracy
 - ϕ < ϕ >=246GeV <-> m_W , m_Z
 - Some dynamical sensitivity to the Higgs mechanims is obtained from EWPO
 - Indirect indication of a light m_H

Peskin & Takeuchi © [PRL65:964,1990]
Altarelli & Barbieri [PLB253:161,1991]

Do we need a fundamental Higgs field?

- EWPO indicate:
 - \odot a spontaneous breaking of SU(2)_L \times U(1)_Y
 - the breaking mechanism must respect, to a good accuracy, the custodial symmetry [$m_Z^2/m_W^2 \approx 1 + (g'/g)^2$]
- General formulation of the symmetry breaking mechanism in absence of a fundamental Higgs (or for large Higgs masses) in terms of a Chiral Lagrangian: $\mathcal{L}_{\chi}^{(2)} = \frac{v^2}{4} \mathrm{Tr}(D_{\mu} U^{\dagger} D^{\mu} U) \qquad \qquad \text{U -> g}_{\text{R}} \text{ U g}_{\text{L}}^{+} = \mathrm{e}^{\mathrm{i}\pi/\mathrm{v}}$

Global: $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \rightarrow SU(2)_{L+R} \times U(1)_{B-L}$

Solution Local: $SU(2)_L \times U(1)_Y \longrightarrow U(1)_Q$

 $D_{\mu}U = -ig'B_{\mu}U + ig U W_{\mu}$

3 Goldstones of the SM

EW Chiral Lagrangian

$$\mathcal{L}_{eff} = \mathcal{L}_{gauge}(A^i, \psi^i) + \mathcal{L}_{Yukawa}(U, \psi^i) + \frac{v^2}{4} \text{Tr}(D_{\mu} U^{\dagger} D^{\mu} U)$$

- contains all the degrees of freedom we have directly probed in experiments
- naive cut-off dictated by the convergence of EW loops: Λ_{NDA} = 4πν ≈ 3 TeV
- perfectly describes particle physics up 3 TeV, beyond the tree level, with only two drawbacks
 - (point toward the existence of new degrees of freedom below the naive cut-off):
 - Violation of unitarity in W_LW_L → W_LW_L scattering (tree-level amplitude violates unitarity for s ≈ 1 TeV)
 - Bad fit to S and T

Introducing heavy vectors

- A natural alternative to Higgs-type mechanisms in curing the problem of unitarity in WW → WW scattering is represented by heavy vector fields
- Expected in many non-SUSY scenarios:
 - techni-rho in technicolor,
 - massive gauge bosons in 5-dimensional theories, hidden gaugemodels
- Difficult task is to cure at the same time unitarity and EWPO
 - can be analysed in general terms constructing an appropriate effective chiral Lagrangian with the heavy vectors as new explicit d.o.f.

$$\mathcal{L}_{\chi} = \frac{v^2}{4} \text{Tr}(D_{\mu} U^{\dagger} D^{\mu} U) + \mathcal{L}_{kin}(R, U, A_i; m_R) + \mathcal{L}_{int}(R, U, A_i; G_R)$$

Barbieri et al. [0806.1624]

- Consider an effective theory based on the following two main assumptions:
 - The (new) dynamics that breaks the SM EW symmetry is invariant under the global symmetry $SU(2)_L \times SU(2)_R$ and under the discrete parity P: $SU(2)_L \leftrightarrow SU(2)_R$
 - One vector (V), or one vector + one axial-vector (V+A), both belonging to the adjoint representation of SU(2) L+R (triplets), are the only light fields below a cut-off Λ = 2-3 TeV
- Effective Lagrangian expansion based on ordering of operators according to the standard derivative (momentum) expansion

Unitarizing W_LW_L scattering

Barbieri et al. [0806.1624]

No tree-level violation of unitarity for

$$\mathcal{M} = \frac{s}{v^2} - \frac{G_V^2}{v^4} \left[3s + m_V^2 \left(\frac{s - u}{t - m_V^2} + \frac{s - t}{u - m_V^2} \right) \right]$$

The unitarity constraint is almost insensitive to the value m_V

EWPO

Barbieri et al. [0806.1624] The leading contributions to S & T generated by the exchange of single heavy fields

$$\Delta \hat{S} = g^2 \left(\frac{F_V^2}{4m_V^2} - \frac{F_A^2}{4m_A^2} \right)$$

$$\Delta \hat{T} = \frac{3\pi\alpha}{c_W^2} \left[\frac{F_A^2}{4m_A^2} + \left(\frac{F_V - 2G_V}{2m_V} \right)^2 \right] \frac{\Lambda^2}{16\pi^2 v^2} + .$$

- \odot O(1) factor [Λ replaced by some heavy mass]
- Two natural ways to accommodate the bounds:
 - Both V and A light, almost degenerate
 - Only V light, with small F_V
- EWPO& unitarity can be accommodated for specific choices of the free parameters

Main conclusion:
We need at least one
relatively light vector field

- Main properties of vector fields
 - Leading decay mode: 2 longitudinal SM gauge bosons

$$\Gamma_{V^+} \approx \Gamma_{WZ}^V = rac{G_V^2 m_V^3}{48\pi v^4} \left[1 + \mathcal{O}(g^2 \epsilon^2)
ight] \; , \quad ext{5 GeV [m_V = 0.5 TeV]} \; . \ \ \, 40 \; ext{GeV [m_V = 1.0 TeV]} \; .$$

- $\bullet \quad \Gamma_{V^0} \quad \approx \quad \Gamma_{WW}^V = \Gamma_{WZ}^V \left[1 + \mathcal{O}(g^2 \epsilon^2) \right]$
- Narrow widths!
- ZZ channel forbidden
- Coupling to SM fermions highly suppressed

$$Br(V^0 \to q\bar{q}) \approx 3Br(V^0 \to \ell^+\ell^-) \approx \frac{6F_V^2 m_W^4}{G_V^2 m_V^4} \quad \text{1.6\% [m_V = 0.5 TeV, } F_V = 2G_V \text{]}$$

Leading decay modes of axial fields can be to a vector and SM g. b.

- The most general signature of Higgsless models is the appearance of the vector state in WW scattering [pp → V + jj (WW fusion) → WW(WZ) + jj]
- Model-independent link with the unitarity problem

The most general signature of Higgsless models is the appearance of the vector state in WW scattering [pp → V + jj (WW fusion) → WW(WZ) + jj]

Belyaev [0711.1919]

Resonant cross section including

- leptonic BR's (l=e, μ) [$\epsilon_{lept} = 21\% \times 6.7\% = 1.5\%$]
- p_T(jets) > 30 GeV
- standard VBF jet cuts $[\Delta \eta > 4, M_{jj} > 1 \text{TeV} \epsilon_{VBF} < 30\%]$

- A potentially cleaner signal (if the resonances are not too heavy) is the Drell-Yan production of the resonances and subsequent decay into l⁺l⁻, 2 and 3 SM heavy gauge bosons
 - Link to the contribution of the heavy vectors to EPWO

Given the narrow widths, for low masses the signals are quite large

Cata, Isidori & J.F.K [0905.0490]

	M = 500 GeV	M = 750 GeV	M = 1000 GeV
$\sigma(pp \to V^+ \to X)_{\sqrt{s}=14 \text{ TeV}}$	11 pb	1.2 pb	0.23 pb
$\sigma(pp \to V^+ \to X)_{\sqrt{s}=10 \text{ TeV}}$	6.7 pb	0.7 pb	0.13 pb

- However....
 - The leading decay modes (2W, 3W) have low efficiencies
 - The l^+l^- case is suppressed by the small $Br(R \rightarrow l^+l^-)$

Signal of heavy vectors at the Tevatron?

- The l⁺l⁻ state of the art is the analysis of the e⁺e⁻ final state in p-pbar collisions published by CDF
- Using their data as normalization for the SM events (takes into account all the relevant exp. efficiencies!), we have produced an exclusion plot in the F_V-m_V plane
- Two main assumptions:
 - G_V fixed by unitarity
 - m_A >> m_V

CDF [0810.2059]

Cata, Isidori & J.F.K [0905.0490]

Signal of heavy vectors at the Tevatron?

The l⁺l⁻ state of the art is the analysis of the e⁺e⁻ final state in p-pbar collisions published by CDF

CDF [0810.2059] [0811.0053]

- o If, on the other hand, the excess at higher mass will become significant, we can hope to see a clear signal at the LHC (even with 1-2 fb⁻¹)
 - Not huge peaks as with a sequential Z', but they should be clearly visible.

Signals for heavy vectors at the LHC

- Two SM gauge boson final states
- Some illustrative examples
 - \odot [WZ] BrZ_{lept} \times BrW_{lept} = 1.5 %
 - $F_V = 2G_V$

 - G_V fixed by unitarity

[Warning: the configurations of free params. are realistic, but maximize the signal...]

Signals for heavy vectors at the LHC

- Three SM gauge boson final states
- Some illustrative examples
 - © [WWZ] $BrZ_{lept} \times BrW_{lept} \times BrW_{had} = 0.9 \%$
 - $F_V = 2G_V$
 - \bullet $F_A = F_V$
 - \circ G_V fixed by unitarity
 - $g_A = 1/2$
- In the WWZ final state it is also worth to look at the WZ invariantmass distribution

Conclusions

- Heavy vector fields, which replace the Higgs boson in maintaining perturbative unitarity up to LHC energies, are naturally expected in a wide class of Higgsless models.
- The most general signature of these models is the appearance of the lightest vector state in WW scattering (model-independent link with the unitarity problem).
- The Drell-Yan production of the new states is subject to larger uncertainties.
- For light $m_{V(A)}$ we could expect visible signals (even with low statistics), and the information could help to clarify the role of the heavy vectors in EWPO.
- The results in the e⁺e⁻ channel from Tevatron are already providing a significant information.
- The 2 and 3 SM gauge boson final states seems to be quite promising and would deserve a more realistic study.

Backup Slides

EWPO in the SM

Peskin & Takeuchi [PRL65:964,1990] Altarelli & Barbieri [PLB253:161,1991]

Barbieri et al. [hep-ph/0405040]

- Some dynamical sensitivity to the Higgs mechanims is obtained from EWPO
- Indirect indication of a light m_H under the hypothesis of a heavy cut-off for the SM as effective theory
 - (<-> fine tuning in the Higgs mass term)

$$T = \frac{\Pi_{33}(0) - \Pi_{WW}(0)}{m_W^2}$$

$$S = \frac{g}{g'} \frac{d\Pi_{30}(q^2)}{dq^2} \Big|_{q^2=0}$$

- With heavy spin-1 fields, there is a peculiar problem related to the possible mixing of the heavy states and the Goldstone bosons.
 - Describing the heavy states in terms of Lorentz vectors $(V_{\mu} \& A_{\mu})$, we have a possible mass-mixing of $O(p) \ [\rightarrow tedious redefinition of the fields]$

Gasser & Leutwyler [Annals Phys.158:142,1984] Ecker et al. [Phys.Lett.B223:425,1989] This problem can be avoided describing the heavy spin-1 states by means of antisymmetric tensors ($R_{\mu\nu}$ = $V_{\mu\nu}$, $A_{\mu\nu}$):

$$\mathcal{L}_{kin}(R^{\mu\nu}) = -\frac{1}{2} \text{Tr}(\nabla_{\mu} R^{\mu\nu} \nabla^{\sigma} R_{\sigma\nu}) + \frac{1}{4} m_R^2 \text{Tr}(R^{\mu\nu} R_{\mu\nu})$$

$$\langle 0 | R^{\mu\nu} | R(p, \epsilon) \rangle = \frac{i}{m_R} [p_{\mu} \epsilon_{\nu} - p_{\nu} \epsilon_{\mu}]$$

$$\nabla_{\mu} R = \partial_{\mu} R + [\Gamma_{\mu}, R] \qquad \Gamma_{\mu} = \frac{1}{2} [u^{\dagger} D_{\mu} u + u D_{\mu} u^{\dagger}], \quad u^2 = U$$

- In the antisymmetric formulation the couplings between heavy fields and Goldstone bosons start at O(p²) ⇒ integrating out the heavy fields we are automatically projected into the basis of the O(p⁴) chiral operators with light fields only.
 - In QCD case this procedure leads to a successful description of all the leading $O(p^4)$ light-field couplings
- 1⇔1 correspondence between lowest-order vector couplings [O(p²)] and next-to-leading order Goldstone-boson couplings [O(p⁴)]

- The dynamics of the system below the cut-off is described by 3 + 2 parameters: $(M_V, G_V, F_V) + (M_A, F_A)$.
 - Naive dimensional analysis implies $F_{V(A)}$, $G_V = O(v)$

effective theory correspond to

specific choices of the free

parameters.

$$[u_{\mu}=iu^{\dagger}D_{\mu}Uu^{\dagger}] \qquad \mathcal{L}_{int}=\frac{i}{2\sqrt{2}}G_{V}\mathrm{Tr}(V^{\mu\nu}[u_{\mu},u_{\nu}]) \qquad \qquad W_{\mathrm{T}}+B_{\mathrm{T}} \qquad \qquad + \qquad W_{\mathrm{T}}+B_{\mathrm{T}} \qquad + \qquad W_{\mathrm{T}}+B_{$$

EWPO with Resonances

- Tree-level positive contribution to S:
 - (worsens the agreement with EWPO)
- At 1-loop level potentially large (quadratically divergent) positive contribution to T
 - One-loop breaking of the custodial symmetry due to g' ≠ 0

$$\Delta \hat{S} = g^2 \left(\frac{F_V^2}{4m_V^2} - \frac{F_A^2}{4m_A^2} \right)$$

$$\Delta \hat{T} = \frac{3\pi\alpha}{c_W^2} \left[\frac{F_A^2}{4m_A^2} + \left(\frac{F_V - 2G_V}{2m_V} \right)^2 \right] \frac{\Lambda^2}{16\pi^2 v^2} + \dots$$

- Main properties of axial fields
 - $O(m_A^3)$ widths only from $A \rightarrow VW$
 - [mediated by effective ops. with two heavy fields $A[\partial V, \partial U]$, not included in Lint]
 - potentially suppressed if m_A ≈ m_V

$$\Gamma_{V^+W^-}^A = \Gamma_{V^-W^+}^A = \Gamma_{V^0W^+}^A = \Gamma_{V^+Z}^A \doteq \Gamma_{VW}^A$$

$$\Gamma_{V^+W^-}^A = \Gamma_{V^-W^+}^A = \Gamma_{V^0W^+}^A = \Gamma_{V^+Z}^A \doteq \Gamma_{VW}^A \,,$$

$$\Gamma_{VW}^A = \frac{m_A^3}{48\pi v^2} (1-r^2)^3 \left[g_A^2 (1+2r^2) + g_V^2 \left(1+\frac{2}{r^2}\right) + 6g_A g_V \right]$$

 $O(m_A)$ widhts of the type A \rightarrow longitudinal + transverse SM gauge bosons,

$$\Gamma_{WW}^{A} = \frac{g^2 F_A^2 m_A}{192 \pi v^2} \; , \quad \Gamma_{WZ}^{A} = \frac{1}{2} \Gamma_{WW}^{A} \left[1 + \frac{(1 - 2s_W^2)^2}{c_W^2} \right] \; , \quad \Gamma_{W\gamma}^{A} = 2s_W^2 \; \Gamma_{WW}^{A}$$

- leading decay modes if m_A ≈ m_V
- Decay widhts to SM fermions identical to the vector case, with corresponding BR enhanced by the suppression of the total rate

- A potentially clean signal (if the resonances are not too heavy) is the Drell-Yan production of the resonances and subsequent decay into l⁺l⁻, 2 and 3 SM heavy gauge bosons
 - easy to estimate (and simulate) normalizing the non- standard rate to SM Drell-Yan processes at the partonic level

Cata, Isidori & J.F.K [0905.0490]

E.g. for charged final states we define the form factor

$$F_f^{R^+}(q^2) = \frac{\sigma(u\bar{d} \to R^+ \to f)}{\sigma(u\bar{d} \to \mu^+ \nu)_{\text{SM}}}$$

$$\frac{d}{dq^2}\sigma(pp \to R^+ \to f) = F_f^{R^+}(q^2)\frac{d}{dq^2}\sigma(pp \to \mu^+ \nu)_{\text{SM}}$$

As long as we can neglect interference effects (with SM or among different resonant contributions), the partonic resonant width is simply given by

$$\sigma(q_i \bar{q}_j \to R \to f) = \frac{12\pi \Gamma_R^2 B r_{\text{in}}^R B r_f^R}{(q^2 - m_R^2)^2 + m_R^2 \Gamma_R^2} \left[1 + \mathcal{O}\left(\frac{q^2 - m_R^2}{m_R^2}\right) \right]$$

Signal of heavy vectors at the Tevatron?

- The l⁺l⁻ state of the art is the analysis of the e⁺e⁻ final state in p-pbar collisions published by CDF
- The "2σ excess" can be fitted nicely by a light vector resonance:
 - ø m_V ≈ 246 GeV
 - F_V ≈ 50 GeV
- Predictions derived within the effective theory:

excluded by CDF [0811.0053]

- similar peak also in the μ+μfinal state
- axial state with $m_A \approx 1.3$ TeV to obtain a good EWPO fit

CDF [0810.2059]

Early LHC Reach

At energies of 4TeV, 5TeV per beam

- Reach in di-lepton channels statistics dominated!
- Need O(1fb⁻¹) of data to surpass current Tevatron limits

Signals for heavy vectors at the LHC

- Two & three SM gauge boson final states
- A detailed estimate of the realistic efficiency for the detection of the heavy vectors in these final states [WZ, WW] + [WWW, WWZ, WZZ] has not been performed yet. So far we have analysed only the signal against the irreducible SM background = same e.w. final state
- Selecting leptonic decay is a high price to pay (in terms of efficiencies), but it should ensure a good rejection against non-irreducible backgrounds.
 - Some reference theoretical efficiencies:
 - \odot [WZ] BrZ_{lept} \times BrW_{lept} = 1.5 %
 - [WWZ] $BrZ_{lept} \times BrW_{lept} \times BrW_{had} = 0.9 \%$
 - [WZZ] $BrZ_{lept} \times BrW_{lept} \times BrZ_{had} = 1 \%$
 - \odot [WZZ] (BrZ_{lept})³ \times BrZ_{had} = 0.4 %
 - [WWW] $(BrW_{lept})^3 = 1\%$

Signals for heavy vectors at the LHC

- In the WWZ final state it is also worth to look at the WZ invariant-mass distribution
 - With high statistics (100 fb⁻¹), here we can hope to see a signal even without a light axial vector

