Strong and Electromagnetic Interactions at SPS Energies

Andrzej Rybicki H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences

- Introduction: the Data
- Particle Ratios
- Implications
- Summary

The Data: NA49, sqrt(s_{NN})=17 GeV

 $f = E \frac{d^3 \sigma}{dp^3}$

p+p

Particle Ratios

π^+/π^- ratios

+ Pb+Pb

– N+N

- Pb+Pb is compared to superposition of nucleon+nucleon (N+N) collisions
- **Neutron** fragmentation is obtained from p+p data:

 $n \rightarrow \pi^+ = p \rightarrow \pi^$ $n \rightarrow \pi^- = p \rightarrow \pi^+$

- Pb+Pb is compared to superposition of nucleon+nucleon (N+N) collisions
- **Neutron** fragmentation is obtained from p+p data:

 $n \rightarrow \pi^{+} = p \rightarrow \pi^{-}$ $n \rightarrow \pi^{-} = p \rightarrow \pi^{+}$

- + Pb+Pb
 - N+N
- Pb+Pb is compared to superposition of nucleon+nucleon (N+N) collisions
- **Neutron** fragmentation is obtained from p+p data:

 $n \rightarrow \pi^+ = p \rightarrow \pi^$ $n \rightarrow \pi^- = p \rightarrow \pi^+$

N+N

- Pb+Pb is compared to superposition of nucleon+nucleon (N+N) collisions
- **Neutron** fragmentation is obtained from p+p data:

 $n \rightarrow \pi^+ = p \rightarrow \pi^$ $n \rightarrow \pi^- = p \rightarrow \pi^+$

- Characteristic structure in $\boldsymbol{x}_{_{\!\mathsf{F}}}$ and $\boldsymbol{p}_{_{\!\mathsf{T}}}$
- π^+/π^- reaches zero at $x_F = 0.15 = m_{\pi}/m_p$

Implications

Summary

- New, high precision data on particle production allow a detailed scrutiny of the mechanism of the hadronic interaction, from the elementary to the heavy-ion reaction;
- The heavy-ion collision appears as a mixture of different processes, involving the participant zone as well as the spectator system(s);
- The interplay between the strong and electromagnetic interactions results in visible distortions in ratios of charged particles produced in the collision;
- These distortions may bring new information on the dynamics of the collision.

Thank you!

This work was partially supported by the Polish Ministry of Science and Higher Education under grant no. N N202 078735.

Extra slides

