

W & Z boson production (LHC)

Aristotelis Kyriakis NCSR 'Demokritos', Athens, Greece

On behalf of the ATLAS and CMS Collaborations

Europhysics Conference on High Energy Physics, Krakow 16-22 July 2009

- LHC machine
- ATLAS and CMS detectors
- Inclusive production of Z/ W \rightarrow leptons
- Data Driven Techniques
- W/Z + Jets
- W charge asymmetry
- Z FB asymmetry
- Summary

LHC machine

Cross section (mb)

102

10

10

1.9 2

LHC Circumference	~27 km
Designed E _{cm}	14 TeV
Designed Luminosity	10 ³⁴ cm ⁻² s ⁻¹
bunch crossing rate	40 MHz (t _{bc} =25 ns)
protons/bunch	~10 ¹¹

10

<u>SC dipoles:</u> Number: 1232 Temp: 1.9K Length: 15m Weight:34tons Mag. Field: 8.3Tesla

σ_{inel}(pp)≈80 mb@14TeV

total

elastic

Hat 1 3 13

103

10

Center of mass energy (GeV)

102

10

106

103

10

11111

104

10

109

pp

10

A.Kyriakis, EPS09 16-7-2009

- •W,Z properties are well known
- SM rediscovery studying W,Z production at LHC is fundamental
 - Very clean signal through their leptonic decays, large cross section
 - Provide strong constraints on the detector performance-calibration
 - > Sufficient statistics for $d\sigma/dpt$ and $d\sigma/d\eta$ measurements
 - > $d\sigma/dpt$ spectrum provides constraints on QCD while $d\sigma/d\eta$ is a direct probe of the PDFs
 - Building blocks of new physics scenarios e.i. Z', W', Little Higgs T->tZ ...

CMS Inclusive Z/W(I)

Ζ->μ⁺μ⁻

- At least one of the Muons fired the trigger
- Two OS muons (hits from Tracker + Muon Chambers) with $P_t > 20 \text{GeV}$, $M_{\mu\mu} > 20 \text{ GeV/c}^2$
- Muon Isolation from tracker, ΣP_t of the tracks < 3GeV/c (in cone ΔR <0.3)

W->μv

- Muon fired the trigger
- One muon (hits from Tracker + Muon Chambers) with P_t > 25GeV, $|\eta|$ < 2
- Muon Isolation from tracker, ΣP_t of the tracks/Muon Pt < 0.09 (in cone ΔR <0.3)
- MET stands for a measurement of the escaped v
- M_T > 50 GeV/c²

CMS Inclusive Z/W(II)

Z→e⁺e⁻

- At least one of the Electrons should fired the trigger
- Two electrons with $E_t > 20 GeV$, $|\eta| < 2.5$
- Electron Isolation from tracker, ECAL and HCAL (in cone 0.02< ΔR <0.4)
- Electron Id using shower shape variable(cluster width in η direction) and E/M cluster – track matching
- 70GeV/c² < M_{ee} < 110 GeV/c²

W→ev

- Electron fired the trigger
- One electron with $E_t > 30 GeV$, $|\eta| < 2.5$
- Veto in second electron with Et > 20GeV
- Electron Isolation from tracker, ECAL and HCAL
- Same variables as in Z→e+e- case but tighter cuts

Total Z/W inclusive x-sec

ATLAS				P (404)						
	$\sqrt{s} = 14TeV$	Process	$N(\times 10^{+})$	$B(\times 10^{4})$	A	×£ ð.	A/A = c	$\delta \varepsilon / \varepsilon$	σ (pb)	
RESULTS		$W \rightarrow ev$	22.67 ± 0.04	0.61 ± 0.92	0.	215 0.	.023	0.02 2	$0520 \pm 40 \pm$	=1060
RECOLIC		$W \rightarrow \mu \nu$	30.04 ± 0.05	2.01 ± 0.12	0.	273 0.	.023	0.02 2	$0530 \pm 40 \pm$	= 630
		$Z \rightarrow ee$	2.71 ± 0.02	0.23 ± 0.04	0.	246 0.	.023	0.03	$2016 \pm 16 \pm$	= 83
∠ =50pb ⁻¹		$Z \rightarrow \mu \mu$	2.57 ± 0.02	0.010 ± 0.00	02 0.	254 0.	.023	0.03	$2016 \pm 16 \pm$	= 76
			T	07500	150	1				
		N _{selected} - r	Nbkgd	37500 ±	453] 1				
		Tag&Probe	^c offline	97.2 ± 0	3%	-				
		Tag&Probe	Eoffline×trigger	72.3 ± 0	.6 %	-				
	┍┑	Acceptance	22 00	36.6 ± 0	.1 %	4.4_				
		Int. Lumino	osity	10 pb	-1		~ • •			7
		$\sigma_W \times BR($	$W \rightarrow e\nu$)	14200 ± 2	00 pb	1.08	CMS	S Preli	minary	∠→μμ
						1.06	Fitted	cross see	ction norma	lized to 🔄
CMS		$\sigma_{W} \times BR($	$W \rightarrow e\nu$) (MCtru	(th) 13865	pb	E	133 pl	b ⁻¹ result		_
	$\sqrt{s} = 10TeV$,	F~	1.04			Vs.	- 10 TeV
RESULTS		Δσ/σ((sys) = 4%	6		1.02	1	1	(0)	-
		N		4273	+ 65	Ē			1	1 2
$\int = 10 \text{ nb}^{-1}$		Nselected N _{bkgd}		assume	ed 0.0	· 'F	1			
		Tag&Probe <i>e</i>	offline	90.4 ±	0.3 %	0.98		- C.		-
		Tag&Probe ε	trigger	99.88 ±	0.02 %	E	Stat	ictica	Uncer	tainty
			total	40.4 ±	0.5 %	0.96	Siui	ISTICU	Oncer	Tunny_
		Int. Luminos	sity	10 p	b^{-1}		ß	5	45	33
		$\sigma_{Z/\gamma^*} \times BR$	$(Z/\gamma^* \rightarrow e^+e^-)$	1300 ±	20 pb					∫Ldt (ṕb¹)
	-	$\sigma_{Z/\gamma^*} \times BR$	$(Z/\gamma^* ightarrow e^+e^-)$ (MG	Ctruth) 1296	pb	Ē	Extra	a Unc	ertaint	y form
		Δσ/σ((sys) = 2.	4%		L	_umi	nosit	y 10%	

Misalignment and uncertainties on the magnetic field have an impact on the reconstructed Z boson mass due to the muon momentum scale corrections of the order of 2.7%

Tag&Probe Method: Used to measure efficiencies from data

- 1. Tag Lepton(µ,e): pass stringent Muon or electron Identification criteria
- 2. Probe(μ ,e) : pass a set of id criteria depending on the efficiency under study
- 3. $M_{lepton-Tag,lepton-Probe}$ in a window around M_Z

CMS Preliminary

MC

0

0.5

T&P (data L=10 pb-1)

1 1.5 2

Trigger Efficiency

0.7

0.6

0.5

 $\sqrt{s} = 10 TeV$

-1 -0.5

-1.5

-2

A.Kyriakis, EPS09 16-7-2009

η

13

Data Driven Techniques (II)

Matrix or ABCD method:

Used to estimate the QCD background in W leptonic decays from data

Assume:

 $F_{QCD} = QCD_A/QCD_B = QCD_D/QCD_C = F'_{QCD}$

Make a scatter plot of two uncorrelated variables i.e. lepton Isolation vs Missing Transverse Energy (MET).

where $QCD_X = N_X$ -EWK_X-S_X and N_X, EWK_X,S_X are the total number of events, the EWK events (small number estimated from MC simulation) and the W→Iv events in region X(=A,B,C,D) respectively.

→ Then $F_Z = S_A/S_B$, $F_Z' = S_D/S_C$ can be estimated from the γ*/Z→ee Ersatz (substitute) MET. So emulate the neutrino by calculating the MET of the Zee

sample but exclude one of the electrons and take into account the different kinematics \rightarrow Provides a reasonable MET representation in W \rightarrow ev events

Also define $I = S_{A+B}/S_{A+B+C+D}$: the efficiency of the Track Isolation cut for the Ws and can be estimated from the T&P method.

 $\checkmark\,$ Finally simple algebra gives the Signal (W) in the A+B regions

 $\sigma(Z + (n+1) \text{ Jets})/\sigma(Z + n \text{ Jets}) \sim \alpha_s$

Z+Jets production is important:

- Test of perturbative QCD
- Important backgrounds for SM and BSM physics
- Test of performance of MC event generators

jet energy scale (JES)	7	7.6
Type 1 missing E_T scale	10 (unclustered E_T^{miss}) + 7 (JES)	7.4
MC p_T^{jet} , η^{jet} dependence	-10,+0	-10,+0
b-tagging of b-jets ($\delta \varepsilon_b$)	8	16
mistagging of c-jets ($\delta \varepsilon_c$)	8	0.5
mistagging of light jets ($\delta \varepsilon_{\ell}$)	7.6	0.5
$N_Z^{afier \ b-tag}$ due to $t\bar{t}$ background subtraction	4	4.6
R	5	0.4
lepton selections	0.5	0.5
luminosity	10	10

Side – bands used to estimate the top background from data $\delta\sigma = \pm 15\%(stat) \pm_{25\%}^{21\%}(sys)$

$pp \rightarrow W(\mu v) + X$ charge asymmetry

The current PDFs predict an excess of W⁺ over W⁻ production with average charge ratio of 1.5 because protons have two u-type valence quarks

 $> A(\eta)$ is rather insensitive to systematics

Can be used to distinguish between different PDFs

$$A(\eta) = \frac{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) - \frac{d\sigma}{d\eta}(W^- \to \mu^- \nu)}{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) + \frac{d\sigma}{d\eta}(W^- \to \mu^- \nu)}$$

 $\hfill\square$ Selection criteria the same as for the $W{\rightarrow}\mu\nu$ cross section measurement

Z Boson FB asymmetry (A_{FB})

In pp collisions, e⁺e⁻ pairs are predominantly produced via *qq* annihilation
 In SM there is an asymmetry (A_{FB}) in the polar emission angle (θ) of the electron relative to the quark momentum vector in the e⁺e⁻ rest frame
 A_{FB} measurement is important:

 \succ improve the knowledge of SM parameters (weak mixing angle - $sin^2\theta_{eff}^{\ \ lept}$). Expect linear dependence between A_{FB} and $sin2\theta_{eff}^{\ \ lept}$ around Z pole

> test the physics BSM (if performed in higher mass)

A_{FB} measurement done around Z mass using either both electrons to be in the central region (C-C) or one in the central

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

N_F: Forward produced events (cosθ>0)

N_B: Backward produced events (cosθ<0)

and the other in the Forward Calorimeters (2.5<|n|<4.9) (C-F)

Summary

- Inclusive Z/W cross section measurements studies performed in both ATLAS and CMS LHC experiments
- Data Driven methods tested for extracting the efficiencies and QCD background
- Together with Z/W+Jets and W charge asymmetry studies present a robust start-up program
- The control of the SM EWK processes gives a significant confidence for New Physics studies

• For CMS:

https://twiki.cern.ch/twiki/bin/view/CMS/Ph ysicsResults

 For ATLAS: http://cdsweb.cern.ch/record/1125884/files /CERN-OPEN-2008-020.pdf?version=5

BACK-UP SLIDES

CMS Muon System P_t resolution

Muon system resolution dominated by multiple scattering in iron for Pt<200 GeV</p>

Tracker alone gives best result, except at high Pt A.Kyriakis, EPS09 16-7-2009

Material Budget

CMS material budget vs η

ATLAS material budget vs $\boldsymbol{\eta}$

Detector component	Required resolution	n η coverage	
	6.50 <i>4</i>	Measurement	Trigger
Tracking	$\sigma_{p_T}/p_T = 0.05\% \ p_T \oplus 1\%$	±2.5	
EM calorimetry	$\sigma_{\!E}/E=10\%/\sqrt{E}\oplus 0.7\%$	±3.2	±2.5
Hadronic calorimetry (jets)			
barrel and end-cap	$\sigma_{\!E}/E=50\%/\sqrt{E}\oplus3\%$	± 3.2	±3.2
forward	$\sigma_{\!E}/E = 100\%/\sqrt{E} \oplus 10\%$	$3.1 < \eta < 4.9$	$3.1 < \eta < 4.9$
Muon spectrometer	σ_{p_T}/p_T =10% at p_T = 1 TeV	±2.7	±2.4

Table 1. General performance goals of the ATLAS detector. Note that, for high- p_T muons, the muon-spectrometer performance is independent of the inner-detector system. The units for *E* and p_T are in GeV.

Z→e⁺e⁻

- At least one of the Electrons should fired the trigger
- Two electrons with $P_t > 20 GeV$, $|\eta| < 2.5$
- Electron Isolation from tracker, (ΣP_t of the tracks/P_t^e)² < 0.02 (in cone 0.02< Δ R <0.6)

Definition of "robust" electron identification criteria.

	H/E	$\sigma_{\eta\eta}$	$\Delta \phi_{in}$	$\Delta \eta_{in}$
Barrel	0.115	0.0140	0.090	0.0090
Endcap	0.150	0.0275	0.092	0.0105

W→ev

Electron fired the trigger

•One electron with $P_t > 20 \text{GeV}$, $|\eta| < 2.5$

•Electron Isolation from tracker as in the $Z \rightarrow e^+e^-$ case

Theoretical Uncertainties

$$I = S_{A+B}/S_{A+B+C+D} \rightarrow I/(1.0 - I) = S_{A+B}/S_{C+D}$$
 (1)

$$S_{A+B} = (F_Z + 1.0)S_B$$
 (2)

$$S_{C+D} = (F'_Z + 1.0)S_C$$
 (3)

Each N has three components: W events, QCD and electroweak (EWK) background events. Assuming that $F'_{QCD} = F_{QCD}$ we get:

$$F_{QCD} = F'_{QCD} = \frac{N_D - EWK_D - S_D}{N_C - EWK_C - S_C} = \frac{N_D - EWK_D - F'_Z S_C}{N_C - EWK_C - S_C} = (1), (3) = \frac{(F'_Z + 1.0)I(N_D - EWK_D) - F'_Z(1.0 - I)S_{A+B}}{(F'_Z + 1.0)I(N_C - EWK_C) - (1.0 - I)S_{A+B}}$$
(4)

ABCD Mathematics (II)

In a similar manner:

$$F_{QCD} = \frac{N_A - EWK_A - S_A}{N_B - EWK_B - S_B} = \frac{N_A - EWK_A - F_Z S_B}{N_B - EWK_B - S_B} = (2) = \frac{N_A - EWK_A - F_Z (S_{A+B}/(F_Z + 1.0))}{N_B - EWK_B - (S_{A+B}/(F_Z + 1.0))} \rightarrow S_{A+B} = \frac{1.0 + F_Z}{F_Z - F_{QCD}} [N_A - EWK_A - F_{QCD} (N_B - EWK_B)]$$
(5)

Combining (4),(5) leads to an equation of the type:

$$aS_{A+B}^2 + bS_{A+B} + c = 0.0$$

with

$$a = (1.0 - I)(F'_Z - F_Z)$$

$$b = I(F'_Z + 1.0)[F_Z(N_C - EWK_C) - (N_D - EWK_D)] + (1 + F_Z)(1 - I)[(N_A - EWK_A) - F'_Z(N_B - EWK_B)]$$

$$c = I(1 + F_Z)(1 + F'_Z)[(N_D - EWK_D)(N_B - EWK_B) - (N_A - EWK_A)(N_C - EWK_C)]$$

Then

if
$$F'_{Z} = / = F_{Z}$$
 we get $S_{A+B} = (-b \pm SQRT(b^{2} - 4ac))/2a$
if $F'_{Z} = F_{Z}$ we get $S_{A+B} = -c/b$