

EPS 2009, July 16-22, Krakow, Poland

(ZH and $H \rightarrow \gamma \gamma)$

Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH \rightarrow \nu \nu b \overline{b}$

 $ZH \rightarrow \ell \ell b \bar{b}$

 $H \to \gamma \gamma$

Conclusions

Backup

Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

Michele Giunta

on behalf of the CDF and D0 Collaborations Fermilab

July, 16 2009

Michele Giunta Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

◆□> ◆□> ◆目> ◆目> ◆日> □ ○ ○ ○

Introduction

Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

> Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH
ightarrow
u
u b ar{b}$

 $ZH \rightarrow \ell \ell b \bar{b}$

 $H \to \gamma \gamma$

Conclusions

Backup

- The **Standard Model** needs the Higgs mechanism to generate the boson and fermion masses
- The SM cannot predict M_H , but can infer it from M_W , M_{top}
 - This allows us to set model dependent constraints based on the measured values of M_W and M_{top}
 - Current global fits constrain $M_H < 163 \ GeV/c^2$ at 95% CL
- LEP excluded at 95%CL an Higgs with $M_H < 114 \ GeV/c^2$ by direct searches
- Tevatron can observe/exclude the Higgs in $M_H \in [100; 200]$ GeV/ c^2 which covers the region allowed by the SM fits and LEP

 *

Tevatron

Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

> Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH \rightarrow \nu \nu b \bar{b}$

 $ZH \rightarrow \ell \ell b$

 $H \rightarrow \gamma \gamma$

Conclusion

Backup

Michele Giunta

The CDF and D0 Detectors

Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH \rightarrow
u
u b \overline{b}$

 $ZH \rightarrow \ell \ell b \overline{b}$

 $H \rightarrow \gamma \gamma$

Conclusion

Backup

- Interaction vertex silicon detectors (b-jet tagging)
- Trackers in a magnetic field (lepton ID)
- EM and Hadronic calorimeters (jets, e^{\pm} , γ)
- Muon detectors systems wrap the detectors

Integrated luminosity \forall experiment

Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

> Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH
ightarrow
u
u b \overline{b}$

 $ZH \rightarrow \ell \ell b \overline{b}$

 $H
ightarrow \gamma \gamma$

Conclusions

Backup

• The Tevatron has delivered so far almost 7 fb^{-1} of data

- more than 9 fb^{-1} by the end of 2010
- up to 12 fb^{-1} if running in 2011
- Each experiment has about 6 fb^{-1} of data on tape
- Analyses presented here use 2.1 to 4.2 fb^{-1}

The record store initial luminosity achieved is $3.7 \cdot 10^{32} cm^{-2} s^{-1}$

Production of Higgs and Backgrounds

Michele Giunta

- The Higgs production cross section at the Tevatron is below 1 pb
- Background rates are 6 to 9 orders of magnitude larger

Tevatron close to the picobarn sensitivity!

・ロト ・回ト ・ヨト Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

3

Higgs Production and Decay at Tevatron

hearch for low nass Higgs at the Tevatron (ZH and

> Michele Giunta

Introductio

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH
ightarrow
u
u b \overline{b}$

 $ZH \rightarrow \ell \ell b \bar{l}$

 $H \rightarrow \gamma \gamma$

Conclusion

Backup

We need a good signature to trigger on

High mass Higgs $(135 < M_H < 200)$

• gg fusion, Higgsstrahlung, VBF $\rightarrow H \rightarrow WW \rightarrow \ell \nu \ell \nu$

Low mass Higgs ($M_H < 135$)

- $gg \rightarrow H \rightarrow b\bar{b}$ too challenging
- $qq' \rightarrow VH \rightarrow Vb\bar{b}$ (Higgsstrahlung) [V= W,Z]
 - $(H \rightarrow b\bar{b}) (W \rightarrow \ell\nu)$ • $(H \rightarrow b\bar{b}) (Z \rightarrow \ell^+ \ell^-)$ • $(H \rightarrow b\bar{b}) (Z \rightarrow \nu\nu)$
- $H \rightarrow \gamma \gamma$ (H_f Fermiophobic)

Michele

Giunta

Tools for Analysis

Increase efficiency/acceptance/rejection

- Efficient triggers
- Lepton ID: exploit high and low S/B lepton categories
- Jet b-taggers (low mass $H \rightarrow b\bar{b}$):
 - discrete taggers (CDF) SecVtx and Jet Probability algorithms
 - flavor separators (CDF, D0) jets are separated into b, c, and light using NN discriminants

Use Multivariate analysis techniques

• Neural Networks (NN), Boosted Decision Trees (BDT)

train to separate signal/background MC

Combine, combine, combine

Channels, Experiments

Michele Giunta

 $ZH \rightarrow \nu \nu b \overline{b}$ (1/3)

Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \infty\infty$)

> Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH \rightarrow \nu \nu b \bar{b}$

 $ZH \rightarrow \ell \ell b \bar{b}$

 $H \to \gamma \gamma$

Conclusion

Backup

Final state with only two visible objects (high-energy jets), but a large $\not\!\!E_T$ (energy imbalance from neutrinos)

Trigger: on the $\not\!\!\!E_T$ + jets (2 or 3)

Signal: $ZH \rightarrow \nu\nu\nu b\bar{b}$ and $WH \rightarrow (I)\nu b\bar{b}$

Backgrounds: W/Z+jets, top $(t\bar{t}, single)$, dibosons, QCD with instrumental $\not{\!\!\!\!/}_T$ (data driven)

CDF $(2.1 \ fb^{-1})$

- Preselection: ∉_T>50 GeV, 2 or 3 high E_t jets, ΔR(J₁, J₂) > 1.0
- 3 exclusive b-tag samples
- QCD-Killer NN used to cut
- final NN used to discriminate

D0 (2.1 fb^{-1})

- Preselection: ∉_T>40 GeV, 2 or 3 jets, Δφ(j₁, j₂) < 165^o
- NN b-tagger used w/ asymmetric cuts for best sensitivity

BDT as final discriminant

$ZH \rightarrow \nu\nu b\bar{b}$ (2/3) CDF QCD-Killer NN

Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma\gamma$)

> Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH \rightarrow \nu \nu b \bar{b}$

 $ZH \rightarrow \ell \ell b \bar{l}$

 $H \to \gamma \gamma$

Conclusions

Backup

- Use kinematic informations from jets ($\Delta \phi$ (jets), $\not{\!\!E}_T$, ΔR , etc..)
- Train on MC h.f. QCD and ZH (50%) WH (50%)
- Cut at $NN_{QCDk} > 0$ as part of the selection
- Reject 5% of signals and 65% of QCD

Michele Giunta

 $ZH \rightarrow \nu \nu b\bar{b}$ (3/3)

Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

> Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Process

Tools

 $ZH \rightarrow \nu \nu$

 $ZH \rightarrow \ell\ell$

 $H \to \gamma \gamma$

Conclusion

Backup

Michele Giunta

$ZH \rightarrow \ell\ell b\bar{b}$ (1/3)

BR($Z \rightarrow \ell \ell$) = 2x3.4% ($\ell = e, \mu$), but: clean channel, well measured and fully reconstructed final states, only instrumental $\not{\!\!E}_T$

Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH \rightarrow \nu \nu b \overline{b}$

 $ZH \rightarrow \ell \ell b \bar{b}$

 $H \rightarrow \gamma \gamma$

Conclusion

Backup

Trigger: high- $p_T e$ or μ Signal: $(Z \rightarrow e^+e^-) (Z \rightarrow \mu^+\mu^-) H \rightarrow b\bar{b}$ Backgrounds: Z+jets (b,c, light); $t\bar{t}$; dibosons; fake leptons

 $M_{\ell^+\ell^-}$ must be compatible with M_Z

Tight and loose lepton definitions to increase sensitivity

CDF (2.7 *fb*⁻¹)

- Identify Z candidates
- set 6 categories: 3 exclusive b-tag categories x2 S/B

 Train (6) 2D-NN to simultaneously separate the signal from tt and Z+jet **D0** (4.2 *fb*⁻¹)

- 4 lepton samples: e, μ each with tight and loose definitions
- NN b-tagging: two categories
- (8) BDTs: 4 lepton x 2 b-tag categories

Michele Giunta

$ZH ightarrow \ell\ell b ar{b}$ (2/3) D0 b-tag NN

Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

> Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH
ightarrow
u
u b ar{b}$

 $ZH \rightarrow \ell \ell b \bar{b}$

 $H \to \gamma \gamma$

Conclusions

Backup

- Continuous variable returning a value depending on jet secondary vertex and track kinematics
- Allows to tune the workpoint(s) for the specific analysis
 - Single tag: one tight, one non-tagged
 - Double tag: two loose at least
- Can potentially use the whole spectrum as a discriminant

Michele Giunta

Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

-2

 $ZH \rightarrow \ell \ell b \overline{b}$ (3/3)

Introductio

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH \rightarrow \nu \nu$

 $ZH \rightarrow \ell\ell b$

 $H \to \gamma \gamma$

Conclusion

Backup

Michele Giunta

 $H \rightarrow \gamma \gamma$ (1/2)

Michele Giunta

Production: Higgsstrahlung, VBF. No gg fusion (top loop) if Fermiophobic (FP) $BR(H \rightarrow \gamma \gamma) = 0.2 \%$ @ 120 GeV (SM) $BR(H_f \rightarrow \gamma \gamma) = 2.8 \%$ @ 120 GeV (FP models)

Trigger: diphoton

Backgrounds: DY($qq \rightarrow ee$); γ +jet; dijet

CDF $(3.0 \ fb^{-1})$

- select with $p_t(\gamma\gamma) > 75 \text{ GeV}$
- BG model from data fit excluding the probed M_H
- Signal model from MC gives a • narrow peak
- Final discriminant: $M_{\gamma\gamma}$

D0 (4.2 fb^{-1})

- Select with $p_t(\gamma \gamma) > 35$ GeV, veto if tracks match EM clusters
- Cut on a NN separates γ from jets
- Final discriminant: $M_{\gamma\gamma}$
- (SM limit: $15.8 \times \sigma_{SM}$)

Michele Giunta Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

(2/2)

Michele Giunta

Introduction

Tevatron CDF, D0

Higgs Processe

Tools

 $ZH \rightarrow \nu \nu l$

 $ZH \rightarrow \ell\ell b$

 $H \rightarrow \gamma \gamma$

Conclusion

Backup

Michele Giunta

Backup Slides

Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma\gamma$)

Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH \rightarrow \nu \nu b$

 $ZH \rightarrow \ell \ell b$

 $H \rightarrow \gamma \gamma$

Conclusions

Backup

Michele Giunta

Mie

Cross Sections and BRs (HDECAY)

for low	m_H	$\sigma_{gg \to H}$	σ_{WH}	σ_{ZH}	σ_{VBF}	$B(H \rightarrow bb)$	$B(H \to \tau^+ \tau^-)$	$ B(H \to W^+W^-) $
liggs at	(GeV/c^2)	(fb)	(fb)	(fb)	(fb)	(%)	(%)	(%)
and	100	1861	286.1	166.7	99.5	81.21	7.924	1.009
$\gamma \gamma$)	105	1618	244.6	144.0	93.3	79.57	7.838	2.216
	110	1413	209.2	124.3	87.1	77.02	7.656	4.411
thele	115	1240	178.8	107.4	79.07	73.22	7.340	7.974
inta	120	1093	152.9	92.7	71.65	67.89	6.861	13.20
uction	125	967	132.4	81.1	67.37	60.97	6.210	20.18
	130	858	114.7	70.9	62.5	52.71	5.408	28.69
on,	135	764	99.3	62.0	57.65	43.62	4.507	38.28
D0	140	682	86.0	54.2	52.59	34.36	3.574	48.33
	145	611	75.3	48.0	49.15	25.56	2.676	58.33
ses	150	548	66.0	42.5	45.67	17.57	1.851	68.17
	155	492	57.8	37.6	42.19	10.49	1.112	78.23
	160	439	50.7	33.3	38.59	4.00	0.426	90.11
ννbδ	165	389	44.4	29.5	36.09	1.265	0.136	96.10
llbb	170	349	38.9	26.1	33.58	0.846	0.091	96.53
	175	314	34.6	23.3	31.11	0.663	0.072	95.94
$\gamma\gamma$	180	283	30.7	20.8	28.57	0.541	0.059	93.45
sions	185	255	27.3	18.6	26.81	0.420	0.046	83.79
	190	231	24.3	16.6	24.88	0.342	0.038	77.61
0	195	210	21.7	15.0	23	0.295	0.033	74.95
	200	192	19.3	13.5	21.19	0.260	0.029	73.47

Michele Giunta

Tevatron Combined SM Higgs Limits

Michele Giunta Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)

イロン イヨン イヨン イヨン

=

Detectors pics

Michele Giunta

Introduction

Tevatron, CDF, D0

Higgs Processe

Tools

 $ZH \rightarrow \nu \nu b \bar{b}$

 $ZH \rightarrow \ell \ell b$

 $H \rightarrow \gamma \gamma$

Conclusions

Backup

 $+ \Box \rightarrow + e \mathbb{P} \rightarrow + \Xi \rightarrow + \Xi \rightarrow - \Xi - - \mathcal{O} \bigcirc \mathbb{C}$ Search for low mass Higgs at the Tevatron (ZH and $H \rightarrow \gamma \gamma$)