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Online tracking work
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Online tracking work

Online tracking work

30 minimum bias events +

H—=77 —=4p

reconstructed tracks with p; » 2.0 GeV
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Connection with the ATLAS DAQ

Connection with the ATLAS DAQ

» The Fast Track processor
receives data from the ROD

» ROD output is duplicated by a
dual output board

» FTK operates in parallel with
the silicon tracker readout
following each Level-1 trigger,
reconstructing the tracks for
use at the beginning of Level-2
trigger processing
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Detector Read-out

Detector Read-out

Silicon Geometry

selayer1 s layer2

ATLAS Pixel + SCT ST
el Divide into
/ ¢ sectors

=ilayer3 ==layer 4

5 =ilayer6
= jlayer 7 ;
1000 1500 2000 2500

6 buses
hit rate: 40MHz/bus

129 AM

» FTK will use all the silicon layers: 3 pixel planes + 8 SCT axial and
stereo planes, using barrel and end-cap regions:
> 11 layers used to do pattern matching
> 14 input coordinates are used to evaluate the track parameters
» Detector data flow divided in 8 ¢-regions

» FTK processors replicate and work in parallel in each region
> The regions are defined with a generous overlap to avoid
inefficiencies at the edges
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Detector Read-out

FTK internal structure
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Pattern recognition with AM

Pattern recognition with AM

» Pattern recognition is CPU ol T T 1T 11
demanding in crowded events

» Task simplified using a coarse [ Tol [ Tol T ]
segmentation of the silicon ol T 61 T
detector (a few mm): adjacent
strips (or pixels) grouped in [ [ololo [ [ 1
Super-Strips (SS)

» The track search happens Lol ol T 1]
during detector Read-out ol o T [ 11
without the need of additional
time [ Tololol [ 1]

» Precalculated using MC
simulation or training data
samples to create the
Pattern Bank (PB)

» Searched using AM to exploit
the maximum parallelism
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Pattern recognition with AM
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Pattern recognition with AM

Pattern recognition with AM

» Pattern recognition is CPU CTel [ [ T 1]

demanding in crowded events

» Task simplified using a coarse [ TeT [ TeT T ]
segmentation of the silicon (ol T & T T

detector (a few mm): adjacent
strips (or pixels) grouped in
Super-Strips (SS)

» The track search happens I N I O

during detector Read-out
without the need of additional ~ —e1—4— 1L 1]
time [ [eJelol 1 T 1

> Precalculated using MC
simulation or training data
samples to create the
Pattern Bank (PB) > Also roads with one missing layers
> Searched using AM to exploit are accepted ([)
the maximum parallelism

» Only hits within the roads go to
the next step



The Fast Tracker Architecture for the LHC baseline luminosity 7

Fitting with linear constraints

Fitting with linear constraints

» Fit limited to hits matching a road in l
the PB l

» Track fitting problem is reduced to a
linear problem: scalar products l

» Approximation valid grouping
patterns in limited geometrical
regions l

> Linear constraints between track’ hits
are evaluated to provide a track x> [

> Problem suitable for FPGA
configured with DSPs [
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fit =22 Gi X/t Gi
» For each combination the 5 3D track /

parameters (Curvature, dp, ..) and a
quality parameter (x2) are calculated Sector constants
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Fitting with linear constraints

Roads and tracks reduction algorithms

Number of roads o
» Duplicated tracks (ghosts) are ; vl
common problem for tracking . — #roads (TFin)
a |g0r|th m “ —— #roads (AM out)
AL b # tracks (Robin in)
. =
» In FTK the problem is B N e T T # racks (TF out)
increased by the overlap of the i
. 1 1M
silicon modules T I
L

» Two type of ghosts: ghost 4 il 50
roads, ghost tracks
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Fitting with linear constraints

Roads and tracks reduction algorithms

Number of roads ';f.t;z':smads'ggg;
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Fitting with linear constraints

Roads and tracks reduction algorithms
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Fitting with linear constraints

Roads and tracks reduction algorithms

» Duplicated tracks (ghosts) are Number of roads e ot good
. Mean 1767
common problem for tracking e {20l
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increased by the overlap of the SYS L s B AR s Hpomren
silicon modules i e im
» Two type of ghosts: ghost I |/
roads, ghost tracks 1 20 30 40 50 60

» Two logical steps:

> Road-Warrior: to reject
roads, before the fits
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Fitting with linear constraints
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Fitting with linear constraints
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Fitting with linear constraints

Pattern bank generation

» The size of the pattern bank
greatly impacts the size and
cost of the entire system

» The PB size is the leading
factor on the track
reconstruction efficiency

» For a PB we define two factors: (

N
S

 PG2+PC18(using roads only)

Coverage & Efficiency, %

of 1 %10
» Coverage: the probability for k " Banksizes

a complete track to have a _ . . o
pattern. Geometrical » Efficiency rises quickly to 90%

parameter » From other considerations PB
» Efficiency: the probability to with ~ 60 x 10°8 patterns are

be in a complete or an being considered.
incomplete pattern
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Fitting with linear constraints

The AM Chip and the crate structure

Current chip used at CDF:

0.18 pm custom cells, = al olalalalalalalal
with 2500 pattern /chip. = a g 2RReang
IEEE Trans.Nucl. Vol. = g A o S0 G R
53 Page(s):2428 - 2433 q ; 5 ;’-‘ ;’* ; ; 4 ; ;

SEEEEEEEEE

TrackFitter

» The AM chip under

consideration: > Each crate will have the logic

> Using standard cells with to fit one region

90nm — 10000pattern/chip » The Pattern-Bank is split into
» Using custom cells gives a several boards
factor 2 » Track-fitter based on FPGA,

> If the pattern banks are very

similar hardware developed for
large we could use 65 nm.

CDF



The Fast Tracker Architecture for the LHC baseline luminosity

Performances

P

erformances in single muon events

Performances in single muon events

> The efficiency is about 90%

» Resolution is comparable with
the offline

Parameter o(FTK) o(OFF)
1/(2p7) [c/GeV] | 7.4-1073 | 6.6-103
¢ [rad] 95.107% | 6.3.1074

dp [em] 53.1073 | 3.3.1073
cot(6) 2.0-1073 1.4-1073

zp [mm] 2.1-1072 | 1.9.1072

Impact Parameter resolution
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ile-up events

WH — bbX®©10%* cm s ! events
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» Single tracks performances are 5T
. . . 3 1
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. . . 811 HHJ@A +
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because quality cut is more sel v +
tight b
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FTK tracks use

FTK tracks use (preliminary)

s Jet Et> 20, FTK

g7
? E & Jet Et>20, 1Pat
» The use of the FTK or offline Z |
tracks as input to b-tagging é} j
algorithm is comparable. 3

s
TETT

1

1

> The time saved in track
finding/fitting can be used
for more sophisticated -
b-tagging algorithms

1t bl ol T
02 03 04 05 06 07 0B 08 1
B-tagging Efficiency

Efficiency of Tau Decays vs. @ FTK_Phi .
o

oo » Effect on other physics object
£ under study:

Der » Rare decay of b-hadrons, as
—o5f

support of muon triggers
Trans.Nucl.Sci.55:145-150,2008
o2 > |dentification of tau using
0.1 .

cone algorithm

3
Ttruth @


http://www.slac.stanford.edu/spires/find/hep/www?irn=7238274
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Conclusions

Conclusions

» FTK can provide global track reconstruction for every level-1 trigger
» The rapid execution time will provide a complete 3D track list at the
beginning of level-2 processing
> The integration with current ATLAS DAQ is “easy”
» Single track quality is comparable with the off-line algorithms
> |t opens the possibility to have more refined L2 algorithms, using
more information than a single Region of Interest
> Schedule for the project is challenging:
> TDR ready for the fall
> First prototypes of the board in the following year.
» Completion of the system prior to the LHC Phase | shutdown
» The AM architecture is ready and scalable:

> Tuning studies are on-going
» Different options are ready if larger pattern banks are needed
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Conclusions

Regions and sectors

» Regions are contiguous
geometrical regions

» Two neighboring regions share
few modules to limit
inefficiency at the borders

» A sector is sequence of silicon
modules, one per plane

» Each sector has its set of fit
constants

Regi on #1

Regi on #8

de | 1210
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Conclusions

Number of fits

> In WH@10~3* events number
of roads and fits per event is

high: ALL(1): number of roads per bank

> (# roads) = 40 x 10° - Entries 150

fit > =2 % 10° H Mean 3.93e+04

> (# fits) = RMS 4.2090+04

» Number of road doesn’t use all Underflow 0
Overflow 0

the RW stages

» Number of fits affordable (1 fit
per ns)
» Fit reduction improving RW
efficiency
» Decrease the SS size
> Increase the number of
FPGAs




	Online tracking work
	Connection with the ATLAS DAQ
	Detector Read-out
	Pattern recognition with AM
	Fitting with linear constraints
	Performances
	Performances in single muon events
	Pile-up events
	Trigger performances

	Conclusions

