G. Volpi for the FTK Collaboration

17/07/2009 - EPS 2009 - Kraków

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Online tracking work

Online tracking work

all charged particles with $\ln l < 2.5$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Online tracking work

Online tracking work

Connection with the ATLAS DAQ

Connection with the ATLAS DAQ

- The Fast Track processor receives data from the ROD
- ROD output is duplicated by a dual output board
- FTK operates in parallel with the silicon tracker readout following each Level-1 trigger, reconstructing the tracks for use at the beginning of Level-2 trigger processing

Detector Read-out

Detector Read-out

- FTK will use all the silicon layers: 3 pixel planes + 8 SCT axial and stereo planes, using barrel and end-cap regions:
 - 11 layers used to do pattern matching
 - 14 input coordinates are used to evaluate the track parameters
- Detector data flow divided in 8 ϕ -regions
 - FTK processors replicate and work in parallel in each region
 - The regions are defined with a generous overlap to avoid inefficiencies at the edges

FTK internal structure

Pattern recognition with AM

Pattern recognition with AM

- Pattern recognition is CPU demanding in crowded events
- Task simplified using a coarse segmentation of the silicon detector (a few mm): adjacent strips (or pixels) grouped in Super-Strips (SS)
- The track search happens during detector Read-out without the need of additional time
 - Precalculated using MC simulation or training data samples to create the Pattern Bank (PB)
 - Searched using AM to exploit the maximum parallelism

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Pattern recognition with AM

Pattern recognition with AM

- Pattern recognition is CPU demanding in crowded events
- Task simplified using a coarse segmentation of the silicon detector (a few mm): adjacent strips (or pixels) grouped in Super-Strips (SS)
- The track search happens during detector Read-out without the need of additional time
 - Precalculated using MC simulation or training data samples to create the Pattern Bank (PB)
 - Searched using AM to exploit the maximum parallelism

Pattern recognition with AM

Pattern recognition with AM

- Pattern recognition is CPU demanding in crowded events
- Task simplified using a coarse segmentation of the silicon detector (a few mm): adjacent strips (or pixels) grouped in Super-Strips (SS)
- The track search happens during detector Read-out without the need of additional time
 - Precalculated using MC simulation or training data samples to create the Pattern Bank (PB)
 - Searched using AM to exploit the maximum parallelism

- Only hits within the roads go to the next step
- Also roads with one missing layers are accepted (□)

Fitting with linear constraints

- Fit limited to hits matching a road in the PB
- Track fitting problem is reduced to a linear problem: scalar products
 - Approximation valid grouping patterns in limited geometrical regions
 - Linear constraints between track' hits are evaluated to provide a track χ²
 - Problem suitable for FPGA configured with DSPs
- In each road, all hit combinations are fit
- For each combination the 5 3D track parameters (Curvature, d₀, ..) and a quality parameter (χ²) are calculated

Roads and tracks reduction algorithms

- Duplicated tracks (ghosts) are common problem for tracking algorithm
- In FTK the problem is increased by the overlap of the silicon modules
- Two type of ghosts: ghost roads, ghost tracks

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙

Roads and tracks reduction algorithms

- Duplicated tracks (ghosts) are common problem for tracking algorithm
- In FTK the problem is increased by the overlap of the silicon modules
- Two type of ghosts: ghost roads, ghost tracks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Roads and tracks reduction algorithms

- Duplicated tracks (ghosts) are common problem for tracking algorithm
- In FTK the problem is increased by the overlap of the silicon modules
- Two type of ghosts: ghost roads, ghost tracks

Roads and tracks reduction algorithms

- Duplicated tracks (ghosts) are common problem for tracking algorithm
- In FTK the problem is increased by the overlap of the silicon modules
- Two type of ghosts: ghost roads, ghost tracks

Two logical steps:

 Road-Warrior: to reject roads, before the fits

Roads and tracks reduction algorithms

- Duplicated tracks (ghosts) are common problem for tracking algorithm
- In FTK the problem is increased by the overlap of the silicon modules
- Two type of ghosts: ghost roads, ghost tracks

Two logical steps:

 Road-Warrior: to reject roads, before the fits

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Roads and tracks reduction algorithms

- Duplicated tracks (ghosts) are common problem for tracking algorithm
- In FTK the problem is increased by the overlap of the silicon modules
- Two type of ghosts: ghost roads, ghost tracks

- Two logical steps:
 - Road-Warrior: to reject roads, before the fits
 - Hit-Warrior: to reduce tracks sharing similar hits after fitting

Roads and tracks reduction algorithms

- Duplicated tracks (ghosts) are common problem for tracking algorithm
- In FTK the problem is increased by the overlap of the silicon modules
- Two type of ghosts: ghost roads, ghost tracks

- Two logical steps:
 - Road-Warrior: to reject roads, before the fits
 - Hit-Warrior: to reduce tracks sharing similar hits after fitting

Pattern bank generation

- The size of the pattern bank greatly impacts the size and cost of the entire system
- The PB size is the leading factor on the track reconstruction efficiency
- For a PB we define two factors:
 - Coverage: the probability for a complete track to have a pattern. Geometrical parameter
 - Efficiency: the probability to be in a complete or an incomplete pattern

- Efficiency rises quickly to 90%
- From other considerations PB with ~ 60 × 10⁶ patterns are being considered.

The AM Chip and the crate structure

Current chip used at CDF: 0.18 μ m custom cells, with 2500 pattern/chip. IEEE Trans.Nucl. Vol. 53 Page(s):2428 - 2433

- The AM chip under consideration:
 - ► Using standard cells with 90nm → 10000pattern/chip
 - Using custom cells gives a factor 2
 - If the pattern banks are very large we could use 65 nm.

- Each crate will have the logic to fit one region
- The Pattern-Bank is split into several boards
- Track-fitter based on FPGA, similar hardware developed for CDF

- Performances

Performances in single muon events

Performances in single muon events

- The efficiency is about 90%
- Resolution is comparable with the offline

Parameter	$\sigma(FTK)$	$\sigma(OFF)$
$1/(2p_T) [c/GeV]$	$7.4 \cdot 10^{-3}$	$6.6 \cdot 10^{-3}$
ϕ [rad]	$9.5 \cdot 10^{-4}$	$6.3 \cdot 10^{-4}$
<i>d</i> ₀ [cm]	$5.3 \cdot 10^{-3}$	$3.3 \cdot 10^{-3}$
$\cot(\theta)$	$2.0 \cdot 10^{-3}$	$1.4 \cdot 10^{-3}$
z0 [mm]	$2.1 \cdot 10^{-2}$	$1.9 \cdot 10^{-2}$

- Performances

Pile-up events

$WH \rightarrow b\bar{b}X$ @10³⁴ cm⁻¹s⁻¹ events

- Single tracks performances are stable also in Hi-lumi samples
 - Efficiency is a bit lower because quality cut is more tight
- Fake rate under control, comparable with the off-line

- Performances

FTK tracks use

FTK tracks use (preliminary)

- The use of the FTK or offline tracks as input to b-tagging algorithm is comparable.
 - The time saved in track finding/fitting can be used for more sophisticated b-tagging algorithms

- Effect on other physics object under study:
 - Rare decay of b-hadrons, as support of muon triggers

Trans.Nucl.Sci.55:145-150,2008

 Identification of tau using cone algorithm

- Conclusions

Conclusions

- FTK can provide global track reconstruction for every level-1 trigger
- The rapid execution time will provide a complete 3D track list at the beginning of level-2 processing
- The integration with current ATLAS DAQ is "easy"
- Single track quality is comparable with the off-line algorithms
 - It opens the possibility to have more refined L2 algorithms, using more information than a single Region of Interest
- Schedule for the project is challenging:
 - TDR ready for the fall
 - First prototypes of the board in the following year.
 - Completion of the system prior to the LHC Phase I shutdown
- The AM architecture is ready and scalable:
 - Tuning studies are on-going
 - Different options are ready if larger pattern banks are needed

- Conclusions

Backup slides

Regions and sectors

- Regions are contiguous geometrical regions
- Two neighboring regions share few modules to limit inefficiency at the borders
- A sector is sequence of silicon modules, one per plane
- Each sector has its set of fit constants

(日) (圖) (E) (E) (E)

- Conclusions

Number of fits

- In WH@10⁻³⁴ events number of roads and fits per event is high:
 - $\langle \# \text{ roads} \rangle = 40 \times 10^3$
 - $\langle \# \text{ fits} \rangle = 2 \times 10^6$
- Number of road doesn't use all the RW stages
- Number of fits affordable (1 fit per ns)
 - Fit reduction improving RW efficiency
 - Decrease the SS size
 - Increase the number of FPGAs

ALL(1): number of roads per bank

