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Connection with the ATLAS DAQ

Connection with the ATLAS DAQ

<2  s

<100  s

µ

µ

(1MB/Event)
Data−Storage

CaloTrack Muon

Pipeline Memory

Readout−Buffer

Event Filter

FTK

Trigger RO Data

Trigger
Level 2

Memory
Pipeline
Trigger
Level 1

~7200 Signals
800,000 signals

~sec.

<2ms

L1 Accept

1−10 GB/s
L2 Accept

R
oI

 C
oo

rd
in

at
es

RoI

40
 M

H
z

40
 M

H
z

75
K

H
z

(1
00

K
H

z)
<

1K
H

z
<

10
0H

z

10−100 MB/s

Complete Event

40
 M

H
z

I The Fast Track processor
receives data from the ROD

I ROD output is duplicated by a
dual output board

I FTK operates in parallel with
the silicon tracker readout
following each Level-1 trigger,
reconstructing the tracks for
use at the beginning of Level-2
trigger processing
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Detector Read-out

Detector Read-out
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Silicon Geometry

I FTK will use all the silicon layers: 3 pixel planes + 8 SCT axial and
stereo planes, using barrel and end-cap regions:

I 11 layers used to do pattern matching
I 14 input coordinates are used to evaluate the track parameters

I Detector data flow divided in 8 φ-regions
I FTK processors replicate and work in parallel in each region
I The regions are defined with a generous overlap to avoid

inefficiencies at the edges
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Detector Read-out

FTK internal structure
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Pattern recognition with AM

Pattern recognition with AM

I Pattern recognition is CPU
demanding in crowded events

I Task simplified using a coarse
segmentation of the silicon
detector (a few mm): adjacent
strips (or pixels) grouped in
Super-Strips (SS)

I The track search happens
during detector Read-out
without the need of additional
time

I Precalculated using MC
simulation or training data
samples to create the
Pattern Bank (PB)

I Searched using AM to exploit
the maximum parallelism

I Only hits within the roads go to
the next step

I Also roads with one missing layers
are accepted ( )
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Fitting with linear constraints

Fitting with linear constraints

I Fit limited to hits matching a road in
the PB

I Track fitting problem is reduced to a
linear problem: scalar products

I Approximation valid grouping
patterns in limited geometrical
regions

I Linear constraints between track’ hits
are evaluated to provide a track χ2

I Problem suitable for FPGA
configured with DSPs

I In each road, all hit combinations are
fit

I For each combination the 5 3D track
parameters (Curvature, d0, ..) and a
quality parameter (χ2) are calculated

pi =
∑

j
cij ·xj +
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d

s

qi

Track Parameter

Sector constants
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Fitting with linear constraints

Roads and tracks reduction algorithms

I Duplicated tracks (ghosts) are
common problem for tracking
algorithm

I In FTK the problem is
increased by the overlap of the
silicon modules

I Two type of ghosts: ghost
roads, ghost tracks

histo_nroads_good
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I Two logical steps:

I Road-Warrior: to reject
roads, before the fits

I Hit-Warrior: to reduce tracks
sharing similar hits after
fitting
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Fitting with linear constraints

Pattern bank generation

I The size of the pattern bank
greatly impacts the size and
cost of the entire system

I The PB size is the leading
factor on the track
reconstruction efficiency

I For a PB we define two factors:

I Coverage: the probability for
a complete track to have a
pattern. Geometrical
parameter

I Efficiency: the probability to
be in a complete or an
incomplete pattern

I Efficiency rises quickly to 90%

I From other considerations PB
with ∼ 60× 106 patterns are
being considered.
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Fitting with linear constraints

The AM Chip and the crate structure

I The AM chip under
consideration:

I Using standard cells with
90nm→ 10000pattern/chip

I Using custom cells gives a
factor 2

I If the pattern banks are very
large we could use 65 nm.
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I Each crate will have the logic
to fit one region

I The Pattern-Bank is split into
several boards

I Track-fitter based on FPGA,
similar hardware developed for
CDF

Current chip used at CDF:
0.18µm custom cells,
with 2500 pattern/chip.
IEEE Trans.Nucl. Vol.
53 Page(s):2428 - 2433
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Performances

Performances in single muon events

Performances in single muon events

I The efficiency is about 90%

I Resolution is comparable with
the offline

Parameter σ(FTK) σ(OFF)
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Performances

Pile-up events

WH → bb̄X@1034 cm−1s−1 events

I Single tracks performances are
stable also in Hi-lumi samples

I Efficiency is a bit lower
because quality cut is more
tight

I Fake rate under control,
comparable with the off-line



The Fast Tracker Architecture for the LHC baseline luminosity 13

Performances

FTK tracks use

FTK tracks use (preliminary)

I The use of the FTK or offline
tracks as input to b-tagging
algorithm is comparable.

I The time saved in track
finding/fitting can be used
for more sophisticated
b-tagging algorithms
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I Effect on other physics object
under study:

I Rare decay of b-hadrons, as
support of muon triggers
Trans.Nucl.Sci.55:145-150,2008

I Identification of tau using
cone algorithm

http://www.slac.stanford.edu/spires/find/hep/www?irn=7238274
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Conclusions

Conclusions

I FTK can provide global track reconstruction for every level-1 trigger

I The rapid execution time will provide a complete 3D track list at the
beginning of level-2 processing

I The integration with current ATLAS DAQ is “easy”

I Single track quality is comparable with the off-line algorithms
I It opens the possibility to have more refined L2 algorithms, using

more information than a single Region of Interest

I Schedule for the project is challenging:
I TDR ready for the fall
I First prototypes of the board in the following year.
I Completion of the system prior to the LHC Phase I shutdown

I The AM architecture is ready and scalable:
I Tuning studies are on-going
I Different options are ready if larger pattern banks are needed
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Conclusions

Backup slides
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Conclusions

Regions and sectors

I Regions are contiguous
geometrical regions

I Two neighboring regions share
few modules to limit
inefficiency at the borders

I A sector is sequence of silicon
modules, one per plane

I Each sector has its set of fit
constants
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Conclusions

Number of fits

I In WH@10−34 events number
of roads and fits per event is
high:

I 〈# roads〉 = 40× 103

I 〈# fits〉 = 2× 106

I Number of road doesn’t use all
the RW stages

I Number of fits affordable (1 fit
per ns)

I Fit reduction improving RW
efficiency

I Decrease the SS size
I Increase the number of

FPGAs
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