D. Martello - Università and INFN, Lecce (Italy)

2009 Europhysics Conference on High Energy Physics 16-22 July 2009 Krakow

Results from the ARGO-YBJ experiment

ARGO 实验力

Outline

✓ Detector features and performance

- \checkmark Cosmic rays and Moon shadow
- ✓ Gamma astronomy
- ✓ Search for Gamma Ray Bursts

<u>キハ井宇宙线观測站 ARGO</u> ARGO LABORATORY OF YBJ COSMIC RAY OI

The YangBaJing Cosmic Ray Observatory (Tibet, China)

Altitude 4300 m a.s.l.

Tibet $AS-\gamma$

Longitude 90° 31′ 50″ East Latitude 30° 06′ 38″ North

Astrophysical Radiation with Ground-based Observatory at YangBaJing

Operation modes

Shower mode

Trigger : number of fired pads (N_{pad}) within 420 ns on the central carpet

for $N_{pad} \ge 20$, rate ~ 3.6 kHz (~220 GBytes/day)

Detection of Extensive Air Showers (direction, size, core ...)

Aims : cosmic-ray physics (threshold ~ 1 TeV) VHE γ-astronomy (threshold ~ 300 GeV) gamma-ray bursts

Scaler mode

counting rates (≥ 1 , ≥ 2 , ≥ 3 , ≥ 4 coincidences) for each cluster

Aims: detector and environment monitor flaring phenomena (gamma ray bursts, solar flares) with a threshold of few GeV

Shower mode

Space pixel: single strip ($7 \times 62 \text{ cm}^2$)

Time pixel: pad (56×62 cm²) is the OR of 8 strips, with a resolution of ~ 1.8 ns

The number of pixels, the time resolution and the full coverage of the central carpet allow to reconstruct the shower with unprecedented details

High space/time granularity allows unprecedeted studies on the EAS phenomenology (different topologies and time structures)

Conical shape in small shower

Studies in progress on the shower time structure

The shadow of the Moon

The shadow of the Moon

A deficit in the cosmic ray flux is expected from the Moon direction. Many items are connected:

- > angular resolution (width of the deficit)
- > pointing accuracy (position of the deficit)
- energy calibration (the westward deflection due to the geomagnetic field depends on the energy of cosmic rays)

proton/antiproton ratio (antiprotons are deflected eastward)

2006-2008 data, with the cut $N_{STRIP} > 60$

Until November 2007 : installation and debug operations, low duty-cycle Since December 2007 : stable data taking with high duty-cycle

The deficit surface is the convolution of the Point Spread Function of the detector and the widespread Moon disc

$$RMS \simeq \sigma \sqrt{1 + \left(\frac{R}{2\sigma}\right)^2}$$

<u>Selected sample</u> (1-year data)

December 2007 - December 2008 $N_{STRIP} > 40$.and. $\theta < 50^{\circ}$

130 x 10⁹ analyzed events

Observation time Source visibility time 1350 hrs 1500 hrs

Signal statistical significance

On-source duty-cycle 90 %

32 s.d.

$$n_{\sigma} \approx 0.88 \sqrt{t \, [hrs]}$$

Looking for an antiproton signal (East deficit)

A likelihood method is applied to estimate the upper limit of the antiproton flux

 $\Phi(\bar{p}) < 0.03 \ \Phi(p)$ at 2.0 TeV (90% c.l.)

-astronomy

E

The technique of EAS detection allows a duty-cycle limited only by maintenance:

Duty-cycle \rightarrow 100%

The field of view is limited only by the atmosphere thickness. Requiring zenith angle < 40° :

Field of View ~ 2 sr

Continuous monitoring of the sky in the declination band

-10°< δ <70°

Presently ARGO-YBJ is the only wide-field-of-view γ -telescope able to detect AGN TeV flares on a few days

CR excesses in the sky map

Crab Nebula energy spectrum

 $dN/dE = (3.73 \pm 0.80) \times 10^{-11} E^{-2.67 \pm 0.25} \gamma cm^{-2} s^{-1} TeV^{-1}$

Mrk 421 X-ray data by ASM/RXTE

Mrk 421 – July-August 2006 ARGO-YBJ test data collected during the x-ray flare

Observation time \approx 109 hours Flux \approx 4 Crab units

Mrk 421 2008 activity

The June 2008 flare observed from optical to TeV energies (12 decades)

- -- optical R-band (GASP-WEBT)
- -- UV band (UVOT)
- -- soft x-rays (ASM/RXTE and SWIFT)
- -- hard x-rays (SWIFT and AGILE)
- -- gamma rays (AGILE)
- -- VHE gamma-rays (Veritas and Magic)

No VHE Cerenkov data after June 8

SEDs for June 2008 flares

Donnarumma et al, ApJ 691 (2009) L13 : the variability is due to the hardening/softening of the electron energy distribution, not to the increase/decrease of the particle density

Search for Gamma Ray Burst

Scaler mode: the counting rates (≥ 1 , ≥ 2 , ≥ 3 , ≥ 4 counts on each cluster) are measured each 0.5 s

Search for sudden increases of the counting rate in coincidence with GRBs observed by satellites

Energy range of the scaler mode search: 1 - 100 GeV

<u> December 2004 - April 2009</u>

66 GRBs in the ARGO-YBJ Field of View ($\theta < 40^{\circ}$)

11 with known redshift

59 long duration GRBs (> 2s) 7 short duration GRBs (≤ 2s)

Look for coincidences :

1) in coincidence within ΔT_{90}

2) in different time intervals around the GRB time

Also the analysis of the stacked GRBs has been performed

No signal detected (1-100 GeV)

Fluence Upper Limits of the order of 10⁻⁵ - 10⁻⁴ erg cm⁻²

Upper Limits on the GRB cutoff energy

Intersection of the fluence upper limit with the extrapolation of the fluence measured by the satellites

These limits are a significant test for competing GRB models

Conclusions

- ARGO-YBJ detector (central carpet + guard ring) is taking data since November 2007 (duty-cycle > 90%)
- ✓ Studies on Cosmic Rays are going on (p-p cross section, anisotropies, shower profile, limit on antiproton flux ...)

 \checkmark First results on γ -astronomy (mainly 1-year data)

- angular resolution as expected (Moon shadow)
- limits on 1-100 GeV fluence from GRBs
- Crab Nebula γ -spectrum in agreement with other measurements
- continuous monitor of all sky

Studies to increase the sensitivity are in progress
(data quality, γ-hadron separation)

 \checkmark VHE γ -sky survey is going on