

The next energy-frontier accelerator a linear e+e- collider?

G. Geschonke CERN, Geneva, Switzerland

Muon Collider

Linear Collider base-line

LEP: 209 GeV

next Electron-Positron Collider

- Centre-of-mass-energy:

- 0.5 3 TeV
- Luminosity: $>2*10^{34}$

Physics motivation:

"Physics at the CLIC Multi-TeV Linear

Collider: report of the CLIC Physics

Working Group,"

CERN report 2004-5

Storage Ring not possible, energy loss $\Delta E \sim E^4$ \rightarrow two linacs, experiment at centre

• total energy gain in one pass: high acceleration gradient

• beam can only be used once: small beam dimensions at crossing point

Boundary conditions: site length

Power consumption

High Energy Physics after LHC

In 1999 ICFA issued a statement on Linear Colliders, that there would be <u>compelling and unique scientific</u> <u>opportunities at a linear electron-</u> <u>positron collider in the TeV energy</u> <u>range</u>. Such a facility is a necessary complement to the LHC hadron collider now under construction at CERN.

The European strategy for particle physics

Unanimously approved by the CERN Council at the special Session held in Lisbon on 14 July 2006

- 4. In order to be in the position to push the energy and luminosity frontier even further it is vital to strengthen the advanced accelerator R&D programme; a coordinated programme should be intensified, to develop the CLIC technology and high performance magnets for future accelerators, and to play a significant role in the study and development of a high-intensity neutrino facility.
- 5. It is fundamental to complement the results of the LHC with measurements at a linear collider. In the energy range of 0.5 to 1 TeV, the ILC, based on superconducting technology, will provide a unique scientific opportunity at the precision frontier; there should be a strong well-coordinated European activity, including CERN, through the Global Design Effort, for its design and technical preparation towards the construction decision, to be ready for a new assessment by Council around 2010.

Basic relation

$$L = \frac{n_b * N^2 * f_{rep}}{A} H_D \longrightarrow L = \frac{P_{beam}}{4 * \pi * E_{cm}} * \frac{N}{\sigma_x * \sigma_y} H_D$$

- n_b : bunches / train
- N: Particles / bunch
- A: beam cross section at IP
- H_D: beam-beam enhancement factor

→ optimization process:
 efficiency - Mains power consumption site length cost

Particle acceleration

using RF fields in cavity resonators

Very high $Q \rightarrow$ small RF power to obtain accelerating voltage. only power taken by beam needs to be replaced.

```
Superconducting cavities: Q about 10<sup>10</sup>
Cu cavity: about 10<sup>4</sup>
```


Superconducting RF

total operating power for cryogenics: 37 MW (includes also magnets e.t.c.)

I. Ben-Zvi

Ponderomotive oscillations (coupling of RF energy to mechanical oscillation)

Solutions have been demonstrated (Flash FEL at DESY)

maximum fields are limited

9-cell NB cavity

Basic differences ILC-CLIC

ILC: Superconducting RF		CLIC: normal conducting copper RF		
	500 GeV	3 TeV		
accelerating gradients	31.5 MV/m	100 MV/m		
	35 MV/m target			
RF Peak power: 0.3	7 MW/m , 1.6 ms, 5 Hz	275 MW/m, 240 ns, 50 Hz		
RF average power: 2.9 l	xW/m	3.7 kW/m		
total length:	31 km	48.4 km		
site power : 2.	30 MW	392 MW		
Beam structure:				
particles per bunch:	20 * 10⁹	3.7 * 10 ⁹		
2625 bur	nches / pulse of 0.96 ms	312 bunches / pulse of 156 ns		
bunch spacing	369 ns	0.5 ns		

The ILC Reference Design ~31 km Not to Scale ģ Service Tunnel Service Tunnel e-/e+ DR er Injection 7 mrad ىنى 7 mrad Extraction e⁺ Injection Extraction RTML RTIML b. ٥ð Ш. **30m Radius** 65 Beamline 30m Radius Beamline er Linac et Linac Undulator Stand Alone e⁺ Source Keep-alive or Source 1.25 Km .33 Km Ş 1.33 Km 11.3 Km ę, 11.3 Km + বা 6-2007 8747.46 Reference Design Report 200-500 GeV centre-of-mass Luminosity: 2×10³⁴ cm⁻²s⁻¹ Based on accelerating gradient of 31.5 MV/m (1.3GHz SCRF)

EPS 2009 G.Geschonke, CERN

N.Walker

ILC Reference Design

RDR Baseline Tunnel Layout

KLYSTRON CLUSTER CONCEPT

IIL

Each tap-off from the main waveguide feeds 10 MW through a high power window and probably a circulator or switch to a local PDS for a 3 cryomodule, 26 cavity RF unit (RDR baseline).

- RF power "piped" into accelerator tunnel every 2.5 km
- Service tunnel eliminated
- Electrical and cooling systems simplified
- Concerns: power handling, LLRF control coarseness

SCRF Technology Required

Parameter	Value	
C.M. Energy	500 GeV	
Peak luminosity	$2x10^{34}$ cm ⁻² s ⁻¹	
Beam Rep. rate	5 Hz	
Pulse time duration	1 ms	2
Average beam current	9 mA (in pulse)	
Av. field gradient	31.5 MV/m	
# 9-cell cavity	14,560	
# cryomodule	1,680	Í
# RF units	560	

Akira Yamamoto

EPS 2009 G.Geschonke, CERN

SRF Test Facilities

A.Yamamoto

İİL

14

Cryomodule Gradient Progress

•20 % improvement required for ILC

- B.Barish

EPS 2009 G.Geschonke, CERN

IC TDP Goals of ILC-SCRF R&D

Field Gradient

- 35 MV/m for cavity performance in vertical test (S0)
- **31.5 MV/m for operational gradient in cryomodule**
 - to build two x 11 km SCRF main linacs

Cavity Integration with Cryomodule

- "Plug-compatible" development to:
 - Encourage "improvement" and creative work in R&D phase
 - Motivate practical 'Project Implementation' with sharing intellectual work in global effort

Accelerator System Engineering and Tests

- Cavity-string test in one cryomodule (S1, S1-global)
- Cryomodule-string test with Beam Acceleration (S2)
 - With one RF-unit containing 3 cryomodule

R&D in test facilities

ILC R&D ongoing in several test facilities:

Beam tests at Flash ATF2 at KEK: Fast kicker performance, final focus design tests CesrTA: e-cloud mitigation

Damping Rings R&D

ILC R&D Board S3 Task Force (Damping Rings) identified 11 *very high priority* R&D items that needed to be addressed for the technical design:

- Lattice design for baseline positron ring
- Lattice design for baseline electron ring
- Demonstrate < 2 pm vertical emittance
- Characterize single bunch impedance-driven instabilities
- Characterize electron cloud build-up
- Develop electron cloud suppression techniques
- Develop modelling tools for electron cloud instabilities
- Determine electron cloud instability thresholds
- Characterize ion effects
- Specify techniques for suppressing ion effects
- Develop a fast high-power pulser

Targeted for ATF Effort Targeted for CesrTA Effort with Low Emittance e⁺ Beam

EPS 2009 G.Geschonke, CERN

LET Summary for the KEK-ATF

- 2 pm is a TDP R&D plan deliverable for ATF
 - Recent demonstrations at light sources (eg., Diamond) may reduce the critical need for this demonstration
 - BUT, the lowest possible emittance is still needed for the ILC experimental R&D program (FII, ATF2,...)
- 4 pm achieved in 2004
 - LET based on Orbit Response Matrix analysis with iterative correction of orbit dispersion and coupling
 - In 2007 the same tuning procedures yielded 20-30 pm
- Critical Improvements
 - DR magnet re-alignment in 2008
 - BPM upgrade program is in progress
- April 2009:

 ϵ_y ~ 10 pm measured by XSR ϵ_y ~ 5 pm measured by Laser Wire

Summary

- Low Emittance Tuning and Vertical Emittance Demonstration
 - Progress at both ATF and CesrTA towards emittance targets
 - Efforts underway for closer collaboration to achieve ultimate goals at both facilities
 - Low emittance tuning and measurement tools will be of general benefit to the accelerator community
- Beam Dynamics Issues FII and EC
 - ATF will be in a position for the next series of FII measurements next month
 - CesrTA focus shifting from upgrades to experimental measurements
 - Mitigation studies underway arrival of chambers with new mitigations from CERN, LBNL, SLAC over the next 2 months
 - Instability and incoherent emittance growth studies will be a principal focus for last half of 2009
- Fast Kickers
 - Beam demonstration effort continues at KEK
 - Development of a *reliable* fast pulser will continue to be a high priority R&D task
- Integration of R&D Results into the ILC Damping Rings Design
 - Improved projections (based on new measurements) for DR instabilities and emittance growth issues expected during 2010
 - Technical inputs for design (vacuum and feedback systems) available on the same timescale
 - Results applicable to both the 6.5 km baseline design as well as the proposed 3 km ring with fewer bunches

ILC R&D plan

calendar year	2008	2009	2010	2011	2012
Tech. Design Phase I					
Tech. Design Phase II					
Siting					
Main linac Configuration Alternative studies					
Define acceptable site criteria					
Collider Design Work					
Definition of minimum machine					
Minimum machine & cost-reduction studies					
Review TDP-II baseline					
Publish TDP-I interim report			10		
Prepare technical specifications					
Technical design work					
Generate cost & schedule					
Internal cost review					
Design and cost iteration					
Technical Design Report					
Cost & Schedule Report					
Project Implementation Plan Report					
Publication final GDE documentation & subm	it for proje	ect approval			

CLIC acceleration system

CLIC = Compact Linear Collider (length < 50 km)

CLIC parameters:

Accelerating gradient: 100 MV/m

RF frequency: 12 GHz

64 MW RF power / accelerating structure

of 0.233m active length

→ 275 MW/m

total active length for 1.5 TeV: 15'000 m

Pulse length 240 ns, 50 Hz

Acceleration in travelling wave structures:

Efficient RF power production !!!!!

The CLIC Two Beam Scheme

Individual RF power sources ?

→ Not for the 1.5 TeV linacs

Two Beam Scheme: Drive Beam supplies RF power

- 12 GHz bunch structure
- low energy (2.4 GeV 240 MeV)
- high current (100A)

The CLIC Two Beam scheme

Bunch charge: 8.4 nC, Current in train: 100 A

CLIC Drive Beam generation

Accelerate long bunch train with low bunch rep rate (500 MHz) with low frequency RF (1 GHz) (klystrons)

interleave bunches between each other to generate short (280 ns) trains with high bunch rep rate (12 GHz)

The full CLIC scheme

Why 100 MV/m and 12 GHz?

Optimisation: (A.Grudiev)

Structure limits:

- RF breakdown scaling
- RF pulse heating

Beam dynamics:

- emittance preservation wake fields
- Luminosity, bunch population, bunch spacing
- efficiency total power

Figure of merit:

• Luminosity per linac input power

take into account cost model

after > 60 * 10⁶ structures: 100 MV/m 12 GHz chosen, previously 150 MV/m, 30 GHz

CLIC Accelerating Module

EPS 2009 G.Geschonke, CERN

Accelerating structures

Objective:

- Withstand of 100 MV/m without damage
- breakdown rate $< 10^{-7}$
- Strong damping of HOMs

Technologies:

Brazed disks - milled quadrants

(W. Wünsch this conference)

Collaboration: CERN, KEK, SLAC

(LERN)

Nominal performance of Accelerating Structures

Design @CERN, Built/Tested @KEK, SLAC BKD Rate for 230ns

8 Sectors damped on-off possibility

Power Extraction : PETS

Special development for CLIC

- Travelling wave structures
- Small R/Q : $2.2 \text{ k}\Omega/\text{m}$ (2 accelerating structure (accelerating structure: $15-18 \text{ k}\Omega/\text{m}$) 0.21 m active length
- 100 A beam current

136 MW RF @ 240 ns per PETS (2 accelerating structures)
0.21 m active length total number : 35'703 per linac

Status:

CTF3: up to 45 MW peak (3 A beam, recirculation) SLAC: 125 MW @ 266 ns

ref: Igor Syratchev

Getting the Luminosity (>2*10³⁴cm⁻²s⁻¹)

Beam size at Interaction Point (rms) : $\sigma_x = 40$ nm, $\sigma_y = -1$ nm Total site AC power: 392 MW

Issues:

- generating small emittance beams
- emittance preservation
- alignment and vibration control
- final focus (Beam Delivery System)

jitter tolerances

work ongoing,

Proof-of-principle:

	Final Focus quadrupoles	Main beam quadrupoles
Vertical	~0.1 nm > 4 Hz	~1 nm > 1 Hz
Horizontal	2 nm > 4 Hz	5 nm > 1 Hz

quadrupole stabilized to < 0.5 nm in vertical plane

Emittance

CLIC has two damping rings each for e⁺ and e⁻ output DR: $\gamma \epsilon_x = 381 / \gamma \epsilon_y = 4.1$ nm rad for $4.1*10^9$ particles at 2.4 GeV

DR design exists

Wigglers being developed, superconducting and normal conducting versions considered

CLIC Parameters and upgrade scenario

http://cdsweb.cern.ch/record/1132079/files/CERN-OPEN-2008-021.pdf

Beam emittances at Damping Rings

Beam sizes at Collisions

R.M.S. Beam Sizes at Collision in Linear Colliders

CLIC main parameters

http://cdsweb.cern.ch/record/1132079?ln=fr__http://clic-meeting.web.cern.ch/clic-meeting/clictable2007.html

Center-of-mass energy	CLIC 500 G		CLIC 3 TeV		
Beam parameters	Conservative	Nominal	Conservative	Nominal	
Accelerating structure	502		G		
Total (Peak 1%) luminosity	0.9(0.6)-1034	2.3(1.4)-1034	1.5(0.73)-1034	5.9(2.0)·10 ³⁴	
Repetition rate (Hz)			50	50	
Loaded accel. gradient MV/m	-	30	100		
Main linac RF frequency GHz			12		
Bunch charge10 ⁹	e	. .8	3.72		
Bunch separation (ns)			0.5		
Beam pulse duration (ns)	1	77	156		
Beam power/beam (MWatts)	4	1.9	14		
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	3/40	2.4/25	2.4/20	0.66/20	
Hor/Vert FF focusing (mm)	10/0.4	8 / 0.1	8 / 0.3	4 / 0.07	
Hor./vert. IP beam size (nm)	248 / 5.7	202 / 2.3	83 / 2.0	40 / 1.0	
Hadronic events/crossing at IP	0.07	0.19	0.57	2.7	
Coherent pairs at IP	10	100	5 10 ⁷	3.8 10 ⁸	
BDS length (km)	1.87		2	.75	
Total site length km	13.0		4	8,3	
Wall plug to beam transfert eff	7.5%		6	.8% 37	
Total power consumption MW	EPS 2009 G.Geschonke, CERN		415		

CLIC Test Facility CTF3

Provide answers for CLIC specific issues → Write CDR in 2010

Two main missions:

Prove CLIC RF power source scheme:

- bunch manipulations, beam stability,
- Drive Beam generation
- 12 GHz extraction

Demonstration of "relevant" linac sub-unit:

• acceleration of test beam

Provide RF power for validation of CLIC components:

accelerating structures,

RF distribution,

PETS (Power extraction and Transfer

Structure)

CTF3 building blocks

Infrastructure from LEP

total length about 140 m

EPS 2009 G.Geschonke, CERN

CTF3 - CLIC

CTF3 is scaled down from CLIC:

	CLIC	CTF3
Drive Beam energy	2.4 GeV	150 MeV
compression / frequency multiplication	24 (Delay Loop + 2 Combiner Rings)	8 (Delay Loop + 1 Combiner Ring)
Drive Beam current	4.2 A*24 → 101 A	3.5 A*8 → 28 A
RF Frequency	1 GHz	3 GHz
train length in linac	139 µs	1.5 μs
energy extraction	90 %	~ 50 %

CTF3 uses existing infrastructure from LEP injector:

Building, infrastructure,

3 GHz RF power plant,

Delay Loop

Designed and built by INFN Frascati

- circumference 42 m (140 ns) isochronous optics
- wiggler to tune path length
 - (9 mm range)

1.5 GHz RF deflector

EPS 2009 G.Geschonke, CERN

CLIC-CTF3 Collaboration Board 29 May 2009

CLIC feasibility in CTF3 & perspectives after 2010

CLIC feasibility issues

SYSTEMS		Critical parameters	Relevant Facilities Common with ILC in red
		-	•
tures	Main Beam Acceleration Structures: Demonstrate high-power operation of nominal CLIC structures with damping features at the design gradient, with design pulse length and breakdown rate .	Average loaded gradient 100 MV/m total/flat-top pulse length 240/160 ns < 3·10-7 BR/(pulse*m) minimum average a/λ 0.11 Long range wake <6V/pC/m/mm	CTF2&3 (2005-2010) Test Stand (2009-10) SLAC/NLCTA SLAC/ASTA KEK/NEXTEF
Struc	<u>RF Power production structures:</u> Demonstratehigh-power operation of nominal PETS with damping features at the design power, with design pulse length, breakdown rate and on/off capability	132 MW total/flat-top pulse length 240/160 ns < 10-7 BR/(pulse*structure) Wakefield below 9 V/pC/m/mm On/Off/adjust capability	CTF3 (2005-2010) CTF3/TBTS (2008-10) CTF3/TBL (2009-10) SLAC/ASTA
Two Beam	<u>Two Beam Acceleration and module integeration:</u> Demonstrate two-beam acceleration and operation in a prototype module equipped with all critical subsystems	Two Beam Acceleration at nominal parameters as given above for individual components Pulse shape accuracy 0.1%	CTF2&3/TBTS (2004-10)
Drive Beam	<u>Drive Beam Production</u> - Beam generation and combination - phase and energy matching - Potential feedbacks	100 Amp peak current 12GHz bunch repetition frequency 0.2 degrees phase stability at 12 GHz 7.5 10 ⁻⁴ intensity stability	CTF3 (2005-2010) CTF3/TBL (2009-10) X-FEL LCLS
	<u>RF power generation by Drive Beam</u> - Rf power extration - Beam stability	90% extraction efficiency Large momentum spread	CTF3/TBL
Beam Physics	<u>Generation and Preservation of Low Emittances</u> Damping Rings, RTML and Main Linacs	Emittances(nm): H= 600, V=5 Absolute blow-up(nm): H=160, V=15	ATF, SLS, NSLSII Simulations LCLS, SCSS
Stabili zation	Main Linac and BDS Stabilization	Main Linac : 1 nm vert. above 1 Hz; BDS: 0.15 to 1 nm above 4 Hz depending on final doublet girder implementation	CESRTA ATF2
Operation and reliability	Operation and Machine Protection Staging of commissioning and construction MTBF, MTTR Machine protection with high beam power	drive beam power of 72 MW @ 2.4 GeV main beam power of 13 MW @ 1.5 TeV	CTF3
Detector	Beam-Beam Background Detector design and shielding compatible with breakdown generated by beam beam effects during collisions at high energy EPS 2009 G Geschonke, CEI	3.8 10 ⁸ coherent pairs	43

World-wide CLIC&CTF3 Collaboration

••

Ø

Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) Gazi Universities (Turkey)

33 Institutes involving 21 funding agencies and 18 countries

Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute (UK)

JINR (Russia) Karlsruhe University (Germany) KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France) NCP (Pakistan) North-West. Univ. Illinois (USA) Oslo University (Norway) Patras University (Greece) Polytech. University of Catalonia (Spain) PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Thrace University (Greece) Uppsala University (Sweden)

+

NN

Beam structure:

ILC

CLIC

particles per bunch:

20 * 10⁹

3.7 * 10⁹

2625 bunches / pulse of 0.96 ms

312 bunches / pulse of 156 ns

bunch spacing

369 ns

0.5 ns

Luminosity spectrum

Luminosity Spectrum Reconstruction

- Simple test remix colliding beam particle energies
 - \Rightarrow different spectrum
 - \Rightarrow correlations are important
- \Rightarrow Further study needed

Electron positron pairs

Pair Spectrum

- \bullet ILC, CLIC at $3\,{\rm TeV}$ and CLIC at 0.5 ${\rm TeV}$ nominal parameters used
- Spectrum per bunch crossing shown

Daniel Schulte

Detectors and physics

CLIC: Physics and detectors working group established

ILC – CLIC collaboration

	CLIC	ILC
Physics & Detectors	L.Linssen, D.Schlatter	F.Richard, S.Yamada
Beam Delivery System (BDS) & Machine Detector Interface (MDI)	D.Schulte, R.Tomas Garcia E.Tsesmelis	B.Parker, A.Seriy
Civil Engineering & Conventional Facilities	C.Hauviller, J.Osborne.	J.Osborne, V.Kuchler
Positron Generation (new)	L.Rinolfi	J.Clarke
Damping Rings (new)	Y.Papaphilipou	M.Palmer
Beam Dynamics	D.Schulte	A.Latina, K.Kubo, N.Walker
Cost & Schedule	P.Lebrun, K.Foraz, G.Riddone EPS 2009 G.Geschonke, CERN	J.Carwardine, P.Garbincius, T.Shidara 49

Tentative long-term CLIC scenario Shortest, Success Oriented, Technically Limited Schedule

Technology evaluation and Physics assessment based on LHC results for a possible decision on Linear Collider with staged construction starting with the lowest energy required by Physics

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

EPS 2009 G.Geschonke, CERN

Conclusion

ILC: 500 GeV, upgradable to 1 TeV Technology quite advanced. Project could be proposed in 2012

CLIC: reach up to 3 TeVstill in R&D phase ,TDR expected end 2015.Some parameters are more challenging than ILC.500 GeV parameters however, more relaxed, close to state of the art