The Discrepancy Between τ and e⁺e⁻ Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly

Preliminary result in arXiv: 0906.5443 [hep-ph]

M. Davier, A. Hoecker, G, López Castro, B. Malaescu, X.H. Mo, G. Toledo Sánchez, P. Wang, C.Z. Yuan, <u>Z. Zhang</u>

Muon Magnetic Anomaly a_{μ}

(1) Measurements: $\delta(a_{\mu})_{e\times p} = 6.3 \cdot 10^{-10}$ [i.e. 0.54 ppm]

(2) **Predictions:** a_{μ} receives contributions from all SM sectors:

$$a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm had} + a_{\mu}^{\rm Weak}$$

Needs comparable precision to compare (1) and (2)
Discrepancy between (1) & (2)? → Hint for New Physics
δ(a, had) has the largest uncertainty

→ Improve a_{μ}^{had} from dominant $\pi^{+}\pi^{-}$ channel [~73% of a_{μ}^{had} & ~82% of $\delta(a_{\mu}^{had})$]

How is the LO Hadronic Contribution Calculated?

Could not predict from 1st principles but can be rigorously calculated using ee annihilation data via Dispersion Relation

EPS 2009, July 16-22, Krakow

Connect τ and e⁺e⁻ Data through CVC - SU(2)

Hadronic physics factorizes in Spectral Functions :

U

EPS 2009, July 16-22, Krakow

Isospin symmetry connects $I=1 e^{t}e^{t}$ cross section to vector τ spectral functions:

$$\sigma^{(I=1)} \left[e^+ e^- \to \pi^+ \pi^- \right] = \frac{4\pi\alpha^2}{s} \upsilon \left[\tau^- \to \pi^- \pi^0 v_\tau \right]$$

$$\begin{bmatrix} \tau^{-} \rightarrow \pi^{-} \pi^{0} v_{\tau} \end{bmatrix} \propto \begin{array}{c} \frac{\mathsf{BR}\left[\tau^{-} \rightarrow \pi^{-} \pi^{0} v_{\tau}\right]}{\mathsf{BR}\left[\tau^{-} \rightarrow e^{-} \overline{v}_{e} v_{\tau}\right]} & \frac{1}{\mathsf{N}_{\pi\pi^{0}}} \frac{d\mathsf{N}_{\pi\pi^{0}}}{ds} & \frac{m_{\tau}^{2}}{\left(1-s/m_{\tau}^{2}\right)^{2}\left(1+2s/m_{\tau}^{2}\right)} \\ \text{branching fractions} & \text{mass spectrum} & \text{kinematic factor (PS)} \end{bmatrix}$$

Open Issues (Situation at ICHEP 2006)

- Over 3σ between ee-based prediction with the measurement
- Disagreement between ee- and τ-based predictions
 (disagreement more pronounced in SFs and B_CVC comparisons)

What's New?

□ New tau data from Belle arXiv:0805.3773 [hep-ex] Largest sample $\tau \rightarrow h\pi^0 v_{\tau}$ (5.4·10⁶ Belle ← > 81·10³ ALEPH)

□ Isospin breaking corrections revisited

Relative Comparison of Tau Mass Spectrum

LEP experiments at Z pole:

- + High acceptance, low non-tau background
- τ highly boosted \rightarrow collimated final state
- Low energy experiments at $\Upsilon(4s)$:
- + separated final state \rightarrow easy π^0 recons.
- Important non-tau background

EPS 2009, July 16-22, Krakow

Isospin Breaking (IB) Corrections Revisited

$$\Delta^{\mathrm{IB}} a_{\mu}^{\mathrm{LO,had}}[\pi\pi,\tau] = \frac{\alpha^2 m_{\tau}^2}{6 |V_{ud}|^2 \pi^2} \frac{\mathcal{B}_{\pi^-\pi^0}}{\mathcal{B}_{e^-\overline{\nu}_e\nu_{\tau}}} \int_{4m_{\pi}^2}^{m_{\tau}^2} ds \frac{K(s)}{s} \frac{dN_X}{N_X \, ds} \left(1 - \frac{s}{m_{\tau}^2}\right)^{-2} \left(1 + \frac{2s}{m_{\tau}^2}\right)^{-1} \left[\frac{R_{\mathrm{IB}}(s)}{S_{\mathrm{EW}}} - 1\right]$$
$$S_{\mathrm{EW}} = 1.0235 \pm 0.0006 \qquad \qquad R_{\mathrm{IB}}(s) = \frac{\mathrm{FSR}(s)}{G_{\mathrm{EM}}(s)} \frac{\beta_0^3(s)}{\beta_{-}^3(s)} \left|\frac{F_0(s)}{F_{-}(s)}\right|^2$$

Isospin Breaking (IB) Corrections

Source	$\Delta a_{\mu}^{\mathrm{had,LO}}[\pi]$	Old	
$S_{\rm EW}$ $G_{\rm EM}$	-12.19 -1.86	$K5 \mod 1$ 9 ± 0.15 5 ± 0.88	(DEII2.02) -12.1 ± 0.3 -1.0
FSR	+4.64	$+3.5 \pm 0.6$	
$\rho - \omega$ interference $m_{\pi \pm} - m_{\pi^0}$ effect on σ	+2.40	$+3.3 \pm 0.0$ -7.0	
$m_{\pi^{\pm}} - m_{\pi^{0}}$ effect on Γ_{ρ} $m_{\rho^{\pm}} - m_{\rho^{0}}$	+4.11 $-0.08^{+0.06}_{-0.02}$	+3.71 $-0.35^{+0.31}_{-0.22}$	+4.2 0 ± 2.0
$\pi\pi\gamma$, electrom. decays	-5.94	-1.4 ± 1.2	
Total	-16.5	5 ± 1.55	-13.8 ± 2.4

The old correction does not include the applied FSR correction → Real change 7.4.10⁻¹⁰

GS: Gounaris-Sakurai, PRL 21 (68); KS: Kühn-Santamaria, ZPC48 (90)

EPS 2009, July 16-22, Krakow

The Main Change on IB Corrections

New: $\pi\pi\gamma$, electrom. decays corrections include soft/virtual & hard photons

$$\Gamma_{\rho^{i}}(s) = \Gamma_{\rho^{i} \to \pi\pi(\gamma)} + \Gamma_{\rho^{i} \to \pi\pi\gamma}(s)$$
$$= \Gamma^{0}_{\rho^{i} \to \pi\pi}(s)(1 + \sigma_{\rho^{i}})$$

Flores-Baez, Lopez Castro, Toledo Sanchez, PRD76 (07)

with
$$\sigma_{\rho_0}$$
=+8.4×10⁻³, σ_{ρ_-} =-4.0×10⁻³

Old: only contribution with hard photons taken into account and assume:

 $\Gamma_{\rho \text{0}}$ - $\Gamma_{\rho \text{-}}$ = 0.45 \pm 0.45 MeV

EPS 2009, July 16-22, Krakow

Relative Comparison of ee & IB-corrected τ Data

KLOE 08 data show some discrepancy from CMD2, SND and tau
Need independent ee data for cross-check and clarification (e.g. BaBar)

EPS 2009, July 16-22, Krakow

e⁺e⁻ based $a_{\mu}^{had,LO}$ versus tau based $a_{\mu}^{had,LO}$

Modes	Energy [GeV]	e ⁺ e ⁻ [10 ⁻¹⁰]	τ [10⁻¹⁰]
Low s expansion	$2m_{\pi} - 0.36$	$9.6 \pm 0.1 \pm 0.1_{rad}$	$\textbf{9.8} \pm \textbf{0.1} \pm \textbf{0.1}_{IB}$
$\pi^+\pi^-$ (+KLOE 08)	0.36 – 1.8	$494.2 \pm 3.9 \pm 0.9_{rad}$ $(493.2 \pm 3.1 \pm 0.9_{rad})$	$504.5\pm2.5\pm1.6_{IB}$
$\pi^+\pi^-2\pi^0$	$2m_{\pi} - 1.8$	$16.8 \pm 1.3 \pm 0.2_{rad}$	$21.4\pm1.3\pm0.6_{IB}$
$2\pi^+ 2\pi^-$ (+BaBar)	$2m_{\pi} - 1.8$	$13.1\pm0.4\pm0.0_{rad}$	$12.3\pm1.0\pm0.4_{IB}$
<i>w</i> (782)	0.3 – 0.81	$\textbf{38.0} \pm \textbf{1.0} \pm \textbf{0.3}_{rad}$	-
<i>\phi</i> (1020)	1.0 – 1.055	$\textbf{35.7} \pm \textbf{0.8} \pm \textbf{0.2}_{rad}$	_
Other excl. (+BaBar)	$2m_{\pi} - 1.8$	$24.3\pm1.3\pm0.2_{rad}$	_
$J/\psi, \psi(2S)$	3.08 – 3.11	$\textbf{7.4} \pm \textbf{0.4} \pm \textbf{0.0}_{rad}$	_
<i>R</i> [QCD]	1.8 – 3.7	$\textbf{33.9} \pm \textbf{0.5}_{theo}$	_
R [data]	3.7 – 5.0	$\textbf{7.2} \pm \textbf{0.3} \pm \textbf{0.0}_{rad}$	_
<i>R</i> [QCD]	$5.0 - \infty$	$\textbf{9.9} \pm \textbf{0.2}_{theo}$	_
Sum (+KLOE 08)	$2m_{\pi}-\infty$		$704.4 \pm 3.5 \pm 0.7_{rad} \pm 2.7_{IB}$

EPS 2009, July 16-22, Krakow

a_{μ} Measurement versus SM Predictions

<u>Measurement</u> (BNL-E821) PRD73(06)072003, hep-ex/0602035	11 659 2	208.0	±	5.4 _{stat}	$\pm 3.3_{syst}$	[10 ⁻¹⁰]
<u>SM predictions</u> :						
QED	11 558 -	471.80	9 ± ($0.014_{5 \mathrm{th}\ \mathrm{orde}}$	$_{\rm r} \pm 0.008_{\rm dot}$	μ [10 ⁻¹⁰]
HAD						
- LO	e+e-:	690.1	± 4	$4 \pm 1.9_{rad}$	$\pm 0.7_{QCD}$	[10-10]
	e ⁺ e ⁻ (+KLOE08):	689.1	± 3	$.8 \pm 1.9_{\rm rad}$	$\pm 0.7_{QCD}$	[10-10]
	τ:	704.4	+ ± 3	$8.5 \pm 0.7_{rad}$	$\pm 2.7_{IB}$	[10-10]
- HO		-9.8	8 ±	0.1		[10-10]
- LBL		10.5	5 ±	2.6		$[10^{-10}]$
	(Pro	ades-de F	Rafae	l-Vainshtein, O	9)	
Weak		15.4	1 ±	0.2		[10-10]

EPS 2009, July 16-22, Krakow

a_{μ} Measurement versus SM Predictions

Measurement/predictions discrepancy: τ: 1.9σ, e⁺e⁻: 3.5σ, 3.8σ (+KLOE 08)

EPS 2009, July 16-22, Krakow

Alternative Way of Comparing eter & tau Data

tau: measured BR($\tau \rightarrow \pi^- \pi^0 v_{\tau}$) [free from uncertainty in unfolding detector effects in SF] e⁺e⁻: apply isospin breaking corrections and integrate data over s:

EPS 2009, July 16-22, Krakow

Summary and Prospects

□ New IB corrections + Belle data \rightarrow new τ -based g-2 prediction

 \Box Published CMD2, KLOE08 data \rightarrow new ee-based g-2 prediction

□ The new IB corrections reduced the discrepancy

- in the τ and ee spectral functions
- $B_{measured}$ and B_{CVC} for 2π channel

Both predictions now deviate from the direct measurement → A hint for new physics?

High precision data from BaBar (short term) and KLOE & VEPP2000 may help to resolve the remaining difference in τ and ee based predictions

