The CMS Electromagnetic Calorimeter: Construction, Commissioning and Calibration

> **Toyoko Orimoto** California Institute of Technology On behalf of the CMS ECAL Group

> > EPS 2009 Krakow, Poland 16-22 July 2009

CMS ECAL Requirements

- Radiation Resistant
- Excellent Energy Resolution

CMS Electromagnetic Calorimeter

- Benchmark channel: Discovery of low mass Higgs in H→γγ channel
- Target energy resolution
 0.5% at high energy

Barrel (EB):

- 61200 crystals
- 36 Supermodules (SM), each 1700 crystals
- lηl < 1.48

Endcap (EE):

- 14648 crystals
- 4 Dees, SuperCrystals of 5x5 xtals
- 1.48 < lηl < 3.0

Preshower (ES):

- Pb-Si
- 4 Dees
- 4300 Si strips
- 1.65 < lηl < 2.6

ECAL Construction

CMS Electromagnetic Calorimeter

CMS

Highlights from the CMS ECAL Timeline

CMS Electromagnetic Calorimeter

Toyoko Orimoto, Caltech

Commissioning ECAL with First Beam

Beam Splash Events: Single beam shots of 2×10⁹ protons onto closed collimators 150m upstream of CMS

A "wave" or "splash" of secondary particles passed through CMS, depositing a huge amount of energy

Beam Splash: ECAL Energy

- More than 99% of ECAL channels fired
- Enormous amount of energy deposited in calorimeters!
- ~200 TeV energy deposited in EB+EE
- Estimated hundreds of thousands of muons passing through CMS per event
- White areas: channels masked from readout

Beam Splash: ECAL Timing

Beam splash events provide a source of synchronous hits throughout detector, allowing to internally synchronize ECAL

$$\Delta t = \Delta t_{Readout} + \Delta t_{PlaneWave}$$
$$= (\sqrt{x^2 + y^2 + z^2} - R \pm z)/c$$

• Hardware allows steps of **1ns** steps

 Further synchronization applied in offline reconstruction, better than 1 ns

- Synchronization prior was done with laser light; Latency then adjusted w/ splashes
- Synchronization from beam splashes will be start-up condition; better precision w/ LHC data

Toyoko Orimoto, Caltech

Commissioning ECAL with Cosmics

CRAFT: Cosmic Run At Full Tesla

- > 300 M cosmic events collected
- 3.8T field operated for ~1 month
- All CMS subsystems participated

ECAL Timing

- Average timing of cosmic signal
- Top-bottom difference (t.o.f.)

$$t_{top} - t_{bottom} = c \cdot t_{flight}$$

dE/pdx of cosmic muons traversing ECAL vs muon momentum

- Events for dE/dx selected to be loosely pointing: d0<1m, ldzl<1m
- dE: energy from ECAL clusters
- dx: length traversed in ECAL crystals
- Momentum measured by silicon tracker

Results indicate the correctness of the tracker momentum scale and ECAL energy scale.

ECAL Calibration & Monitoring

Calibration of ECAL crucial to maintain high energy resolution

- Without inter-calibration, same signal would produce different outputs in different crystals.
- Also need overall energy scale

ECAL Monitoring (Monitor Stability and Measure Radiation Effects):

ECAL Stability (<< 0.5%): Monitored with Laser System Transparency Change Correction: Signal Change under Irradiation, Measured with Laser Monitoring System

ECAL In-Situ Calibration

Goal: improve startup calibration as quickly as possible in-situ

Strategy	Time	Precision
φ symmetry : use invariance of mean energy deposited by jets at fixed η	Few hours	~ 2-3%
$\pi^0 \rightarrow \gamma\gamma$: mass peak @ low luminosity	Few weeks	<= 1%
Z→ee: absolute energy calibration	100 pb ⁻¹	< 1%
W→ev: E/p measurement	5-10 fb ⁻¹	0.5%

Conclusions

- Crystal ECAL has been integrated and commissioned in situ, and has been collecting data since 2008
 - Performance has been proven with first LHC circulating beams
 - In addition, more than 300M cosmic ray events collected during CRAFT
- Preshower detector installed in Feb-March 09
 - Being commissioned and has joined CMS global data taking
- CMS ECAL on track for first LHC collision data
 - Ready to improve pre-calibration with in-situ physics calibration
 - Expect results not just with cosmics or single beam, but with collisions soon!

